Функции и строение клеточной мембраны
Содержание:
Ядро в безъядерной клетке
Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала. Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей. Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.
Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп. При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла. После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.
Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.
Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК. Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов. Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.
Цикл пищеварения
Весь круг пищеварительной функции разделяется на следующие этапы:
- попадание компонентов в организм,
- распад ферментов,
- попадание в цитоплазму,
- выведение.
Первая фаза подразумевает поступление веществ в тело человека. Далее они начинаются распадаться при помощи лизосом. Разделенные частички проникают в цитоплазменное поле. Непереваренные остатки просто выходят наружу естественным способом. Впоследствии пазуха становится плотной, начинается превращение в зернистые гранулы.
Пищеварительную функцию клетки делят на несколько этапов: от поступления веществ в тело человека, до окончания пищеварительного процесса
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы
Цитоплазматическая клеточная мембрана
состоит из трех слоев:
Наружного – белкового;
Среднего – бимолекулярного слоя
липидов;
Внутреннего – белкового.
Толщина мембраны 7,5-10 нм. Бимолекулярный
слой липидов является матриксом мембраны.
Липидные молекулы его обоих слоев
взаимодействуют с белковыми молекулами,
погруженными в них. От 60 до 75% липидов
мембраны составляют фосфолипиды, 15-30%
холестерин. Белки представлены в основном
гликопротеинами. Различают интегральные
белки
, пронизывающие всю мембрану, ипериферические
, находящиеся на
наружной или внутренней поверхности.
Интегральные белки
образуют ионные
каналы, обеспечивающие обмен определенных
ионов между вне- и внутриклеточной
жидкостью. Они также являются ферментами,
осуществляющими противоградиентный
перенос ионов через мембрану.
Периферическими белками
являются
хеморецепторы наружной поверхности
мембраны, которые могут взаимодействовать
с различными физиологически активными
веществами.
Функции мембран:
1. Обеспечивает целостность клетки как
структурной единицы ткани.
Осуществляет обмен ионов между
цитоплазмой и внеклеточной жидкостью.
Обеспечивает активный транспорт ионов
и других веществ в клетку и из нее.
Производит восприятие и переработку
информации, поступающей к клетке в виде
химических и электрических сигналов.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает кожа. Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов,
- гликолипидов,
- холестерола,
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают своим выходить за пределы клетки, а чужим — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение,
- каждый липид имеет два конца гидрофильная (любящая воду) головка и гидрофобный (боящийся воды) хвост,
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри,
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает,
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом,
- холестерол придает мембране упругость и жесткость,
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Модели
Их существует несколько:
- «Бутербродная модель». Идею о трехслойном строении всех мембран высказали ученые Даусон и Даниэли в 1935 году. По их мнению, структура пленки была следующей: белки-липиды-белки. Такое представление существовало достаточно долго.
- «Жидкостно-мозаичная структура». Эта модель была описана Николсоном и Сингером в 1972 году. В соответствии с ней белковые молекулы не формируют сплошной слой, а погружаются в биполярный липидный в виде мозаики на различную глубину. Эта модель считается наиболее универсальной.
- «Белково-кристаллическая структура». В соответствии с этой моделью мембраны формируются за счет переплетения белковых и липидных молекул, которые объединены на базе гидрофильно-гидрофобных связей.
История исследования
В 1925 году Эверт Гортер и Франсуа Грендель (1897—1969) с помощью осмотического «удара» получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.
Эксперименты с искусственными билипидными плёнками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Джеймс Даниэлли и Хью Даусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.
Но постепенно накапливались аргументы против «бутербродной модели»:
- накапливались сведения о глобулярности плазматической мембраны;
- оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
- плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
- «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
- количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.
Всё это привело к созданию в 1972 году С. Дж. Сингером и Г. Л. Николсоном жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.
Функции
- Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
- Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
- Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
- Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)
Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами
Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»
Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Капсула
Помимо основных структур, в цитоплазме выделяют твердые, газообразные и жидкие включения ─ это продукты метаболических процессов и запас питательных веществ.
Капсула представляет собой слизистую, которая имеет четкие разграничения от окружающей среды и тесно связана с клеточной стенкой. В клетках животных такого органоида нет. Увидеть ее можно только под специальным световым микроскопом путем окрашивания. Она не является жизнеобразующим органоидом клетки, при ее потере микроорганизм не теряет своей жизнеспособности. У такой бактерии, как лейконосток, в одну капсулу входит не одна микробная клетка. В капсуле сосредоточены антигены, которые определяют особенность, вирулентность и способность вызывать иммунный ответ бактерий.
Также она защищает микроорганизм от таких негативных воздействий:
- высыхания;
- механического воздействия;
- заражения.
У многих видов без нее не обходится прикрепление микроорганизма к питательной среде.
Клеточные оболочки
Клеточные оболочки
ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной
(синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом
(образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой
(образован целлюлозой).
Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны
. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.
Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки
(расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки
(погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки
(пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).
А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).
В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.
Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.
Физико-химические свойства мембран
При обычных (свойственных организму) условиях физическое состояние мембран — жидкое. Однако в их молекулярной организации есть порядок (представлен выше), поэтому правильно называть ее жидкокристаллическим, а состояние этой кристаллической структуры — смектическое.
Свойства:
- чувствительность к внешним условиям,
- асимметричность,
- текучесть,
- изменчивость,
- самоорганизация,
- замкнутость,
- пластичность.
Особенности этой организации, свойственные цитолеммам, позволяют им перейти и в другое состояние (например, в гель при понижении температуры).
Именно поэтому при длительном изменении внешних условий в мембранах происходит изменение и химического состава — они проходят период адаптации, что не всегда благотворно сказывается на состоянии клетки.
При химическом анализе установлено, что все элементы, входящие в состав клеточной оболочки по количеству вариативны. Например, в эритроцитах количество белковых молекул в 2,5 раза больше, чем липидных, а в миелиновой мембране — наоборот.
Строение
Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.
Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.
Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.
Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.
Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.
Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
- Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
- В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.
Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.
Внешний слой такой клетки состоит из:
- самой ЦПМ, которая соприкасается с цитоплазмой;
- клеточной стенки, которая состоит из муреина;
- наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.
Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.
Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.
Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.
Функции цитоплазмы бактериальной клетки
Учитывая вышесказанное, можно сформировать представление о том, что же такое цитоплазма и ее функции в клетке. Если говорить более простым языком, то данный органоид является внутренней средой, связующим звеном между остальными органеллами, то есть жидкостью, служащей для циркуляции различных веществ. Можно провести аналогию с кровью – она так же переносит вещества внутри организма, так же поддерживает комфортные условия для работы внутренних органов.
По большей части, у эукариотов функции цитозоля заключаются в:
- Транспортировке питательных веществ, а также отходов жизнедеятельности микроорганизма.
- Определении расположения органоидов, фиксации их местоположения.
- Объединении внутриклеточных структур в единое целое.
- Формировании внутренней среды.
Ввиду существенных отличий в строении эукариотов и прокариотов, функции цитоплазмы у бактерий отличаются от функций цитозоля других организмов. Цитозоль прокариотов осуществляет следующие функции:
- Создание оптимальных условий для поддержания жизнедеятельности рибосом.
- Транспортировка веществ внутри организма.
- Объединение внутренней структуры организма, обеспечение необходимого химического взаимодействия между включениями.
Содержание цитоплазмы бактерий
Рассматриваемый органоид микробов содержит множество хорошо изученных включений, часть из которых представляет собой целые структуры, отвечающие за функционирование организма, а другая часть — продукты жизнедеятельности одноклеточного. Вышеупомянутые структуры, как показывают исследования, могут быть очень сложными. Так, обнаружено, что в некоторых микроорганизмах определенные включения имеют форму ровного многогранника, диаметром до 500 нанометров.
Рибосомы цитозоля бактерий отвечают за белковый синтез и считаются наиболее важными из структурных составляющих этого органоида. В одной клетке может находиться больше тысячи рибосом. Они, как правило, находятся в свободном состоянии, не связаны с мембраной. Дополнительные органеллы у одноклеточных микроорганизмов могут появляться и исчезать, если они находятся в неблагоприятных условиях, тогда, подстраиваясь под внешнюю среду, микробы создают необходимые для жизнедеятельности в данной среде органоиды.
Некоторое количество продуктов метаболизма, то есть продуктов жизнедеятельности, откладывается бактериями в так называемые «запасы», они формируются на стенках мембраны и возникают только при условии избытка питания в окружающей среде. «Запасы» микроорганизм расходует, если сталкивается с недостатком каких-либо из необходимых веществ.
В бактерия содержится внутри гораздо меньшее количество органелл, чем содержит цитозол у растений или, например, цитоплазма в грибах. В цитозоле гриба, помимо рибосом, различают также: аппарат Гольджи, рибосомы, ядра, митохондрии. Это различие непосредственно влияет на функции цитозоля, но при этом не уменьшает его значения для жизнедеятельности организма прокариотов, без этого органоида существование микроорганизма невозможно.
Как вы считаете, цитоплазма выполняет самую важную роль в жизненном цикле бактерии или есть другие, более важные ее составляющие? Оставьте свое мнение в ! А также смотрите видео о строении бактериальной клетки.