Что такое днк и рнк в биологии?
Содержание:
- Как работают нуклеиновые кислоты
- Мутации ДНК
- Строение ДНК
- Что делает ДНК?
- Проект изучения генома человека
- Виды РНК
- Раскрытие преступлений
- Чем ДНК отличается от РНК?
- Строение нуклеиновых кислот
- Синтез ДНК. Репликация
- ДНК – хранитель генетической информации
- Молекула РНК
- Связь ДНК в передаче генов
- Усиление катящегося круга
- ДНК
- Нуклеиновые кислоты — что это в биологии
- Любопытные факты
- Структура ДНК
- Синтез белка
- Гены
Как работают нуклеиновые кислоты
Название происходит от того факта, что эти молекулы являются кислотами, то есть они хорошо переносят протоны и принимают электронные пары в химических реакциях, и тем фактом, что они были впервые обнаружены в ядрах наших клеток.
Как правило, нуклеиновая кислота большая молекула состоит из строки или «полимера» из единиц, называемых «нуклеотиды «. Вся жизнь на Земле использует нуклеиновые кислоты в качестве среды для записи наследственной информации, то есть нуклеиновые кислоты – это жесткие диски, содержащие необходимый план или «исходный код» для создания клеток.
В течение многих лет ученые задавались вопросом, как живые существа «знают», как производить все сложные материалы, которые им необходимы для роста и выживания, и как они передают свои черты потомству.
Ученые в конце концов нашли ответ в виде ДНК – дезоксирибонуклеиновая кислота – молекула, расположенная в ядре клеток, которая передается от родительских клеток к «дочерним» клеткам.
Когда ДНК была повреждена или передана неправильно, ученые обнаружили, что клетки не работают должным образом. Повреждение ДНК может привести к неправильному развитию клеток и организмов или к настолько сильному повреждению, что они просто погибнут.
Более поздние эксперименты показали, что другой тип нуклеиновой кислоты – РНК или рибонуклеиновая кислота – действовал какпосыльный », Которые могут нести копии инструкций, найденных в ДНК. Рибонуклеиновая кислота также использовалась для передачи инструкций от поколения к поколению некоторыми вирусами.
Мутации ДНК
Повреждение молекул ДНК может быть обусловлено множеством факторов, среди которых чаще всего мутагенное действие оказывают следующие:
- Радиационный. Это рентгеновское или ультрафиолетовое излучение в высоких дозах.
- Оксидантный. К этим видам мутагенов относят все свободные радикалы, оксид азота и пероксид водорода.
- Канцерогенный. Фактор представлен обширным списком веществ, где наиболее распространенными являются бензопирен, афлатоксин и бромистый этидий.
Подавляющее число мутагенов проникают между двумя парами азотистых соединений, нарушая структуру молекулы нуклеиновой кислоты. Самые опасные включения мутагенных компонентов – двухцепочечные. Такие нарушения зачастую приводят к гибели целых фрагментов хромосом и различным транслокациям.
Важно! ДНК человека ежедневно подвергается атаке множества агрессивных факторов, которые вызывают повреждения структуры и разрыв самой спирали. Однако эта молекула отличается способностью к регенерации, что позволяет предупреждать мутации еще на этапе их формирования
Строение ДНК
ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:
- азотистого основания;
- пятиуглеродного сахара (пентозы);
-
фосфатной группы (рисунок 1).
При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание — к 1′-атому.
Основания в ДНК бывают двух типов:
- Пуриновые: аденин ( А ) и гуанин (G);
-
Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),
Строение нуклеотидов в молекуле ДНК
В ДНК моносахарид представлен 2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН), а в РНК — рибозой, имеющей 2 гидроксильные группы (OH).
Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом — 5′-фосфатная группа (5′-конец).
Уровни структуры ДНК
Принято выделять 3 уровня структуры ДНК:
- первичную;
- вторичную;
- третичную.
Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.
Вторичная структура ДНК стабилизируется водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.
Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.
Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см, а в форме суперспирали укладывается в 5 нм.
Правило Чаргаффа
Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:
- У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т или (А + G)/(C + Т)=1.
- В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т): А +C= G + Т или (А +C)/(G + Т)= 1
- Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
- Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.
Что делает ДНК?
ДНК помогает вашему организму расти
ДНК содержит указания, необходимые организму – например, вам, птице или растению – для роста, развития и размножения. Эти инструкции хранятся в последовательности пар нуклеотидных оснований.
Ваши клетки читают этот код из трех оснований, чтобы генерировать белки, необходимые для роста и выживания. Последовательность ДНК, в которой содержится информация для получения белка, называется геном.
Каждая группа из трех основ отвечает специфическим аминокислотам, которые являются строительными блоками белков. Например, групы оснований TGG задают аминокислоту триптофан, тогда как основные групы GGC задают аминокислоту глицин.
Некоторые комбинации, такие как TAA, TAG и TGA, также указывают на конец последовательности белка. Это говорит клетке не добавлять больше белка до аминокислот.
Белки состоят из различных комбинаций аминокислот. Если их разместить вместе в правильном порядке, каждый белок имеет уникальную структуру и функционирование внутри вашего тела.
Как перейти от кода ДНК к белку? Что такое РНК?
Пока мы узнали, что ДНК содержит код, который дает клетке информацию о том, как производить белки. Но что происходит между ними? Проще говоря, это происходит с помощью двухэтапного процесса:
Во-первых, две цепи ДНК разделились. Затем специальные белки внутри ядра считывают пары оснований на цепочке ДНК, чтобы создать промежуточную молекулу мессенджера.
Этот процесс называется транскрипцией, а созданная молекула называется месенджерным РНК (мРНК). мРНК – это еще один тип нуклеиновых кислот, и он делает именно то, что следует из названия. Он путешествует вне ядра, служа сообщением для клеточной машины, строит белки.
На втором этапе специализированные компоненты клетки читают сообщения мРНК одновременно трех пар оснований и работают над сбором белка, аминокислоты за аминокислотой. Этот процесс называется переводом.
Проект изучения генома человека
Эти фрагменты ДНК, полученные в центре Сангера, используются сегодня для классификации генов человека
В октябре 1990 года была создана Организация по изучению генома человека (HUGO) — огромный научный институт, где работают исследователи из Европейского сообщества, США, России, Канады, Японии, Китая и ряда стран Южной Америки. Их цель — идентификация полного генетического состава, или генома, организма человека.
В ноябре 1999 года удалось достичь большого успеха, когда группа учёных центра Сангера в Кембридже (Англия) объявила о прочтении всех 34 млн. оснований, составляющих генетический материал хромосомы 22. Они опубликовали полученные данные в научном журнале «Нейчур» и поместили результаты исследований в Интернете. После завершения проекта в 2003 году учёные могли обнаруживать и описывать 99 % генсодержащих ДНК человека. Это выдающееся достижение должно помочь в лечении наследственных болезней.
Виды РНК
Имеется 3 разновидности рибонуклеиновой кислоты:
- Транспортная (тРНК). Входящие в состав цитоплазмы тРНК являются самыми маленькими молекулами рибонуклеиновой кислоты. Их форма схожа с формой листка клевера. тРНК несет ответственность за транспортировку специфических аминокислот непосредственно к участку, где происходит синтез белка, чтобы инициировать образование пептидных связей.
- Информационная или матричная (иРНК, иРНК). Входит в состав ядра клетки и цитоплазмы. Она транспортирует информацию о строении белка от ДНК к рибосомам, которые являются местом его биосинтеза.
- Рибосомальная (рРНК). Образуется в ядрышках и, как следует из названия, является главной составляющей рибосом. Самая крупная разновидность РНК. Соединяясь с информационной РНК, синтезирует белок
Существует также особый вид. Он обнаружен в некоторых вирусах, бактериях и микроорганизмах. Действует одновременно как тРНК и мРНК. Основная его функция – переработка белка.
Раскрытие преступлений
«Отпечатки» ДНК позволяют идентифицировать комбинации оснований в её молекуле. Повторяющиеся последовательности ДНК уникальны у людей (исключение — однояйцовые близнецы), поэтому образцы ДНК могут служить средством идентификации: индивидуальные последовательности ДНК, обнаруженной на месте преступления, можно сравнить с образцами подозреваемого и почти в 100 % случаев узнать, был ли он там.
При взятии «отпечатка» ДНК очищают от образца материала-источника — лейкоцитов, спермы, костной ткани. Затем с помощью ферментов ДНК «нарезается» на фрагменты разной длины. Их кладут раздельно на слой прозрачного геля, после чего туда подаётся электрический ток.
Поскольку фрагменты ДНК имеют небольшой отрицательный заряд, они смещаются к положительному электроду. При этом чем меньше длина фрагментов, тем быстрее они двигаются, оказываясь разбросанными по поверхности геля.
Эти фрагменты попадают на нейлоновую мембрану, где их маркируют радиоактивными метками. Если к мембране поднести рентгеновскую плёнку, тёмные участки на ней будут соответствовать меченым ДНК. На проявленной плёнке чёрные полосы покажут точное расположение фрагментов ДНК на нейлоновой мембране. Подозреваемого в совершении преступления можно попросить дать образец его ДНК для сравнительного анализа. Если оба «отпечатка» совпадают, следствие получит важнейшие улики.
Чем ДНК отличается от РНК?
По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара.
Но разница в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.
Но в отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом.
Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин. Но в РНК вместо тимина присутствует его разновидность – урацил.
Строение нуклеиновых кислот
Нуклеотиды линейно соединяются между собой, образуя длинные молекулы нуклеиновых кислот. Цепочки многих молекул ДНК являются самыми длинными существующими полимерами. Длина молекул РНК обычно существенно меньше ДНК, но при этом различна, т. к. зависит от типа РНК.
При образовании полинуклеотида (нуклеиновой кислоты) остаток фосфорной кислоты предыдущего нуклеотида соединяется с 3-м атомом углерода пентозы следующего нуклеотида. Связь образуется такая же как между 5-м атомом углерода сахара и фосфорной кислотой в самом нуклеотиде – ковалентная фосфоэфирная.
Таким образом, остов молекул нуклеиновых кислот составляют пентозы, между которыми образуются фосфодиэфирные мостики (по-сути остатки пентоз и фосфорных кислот чередуются). От остова в сторону отходят азотистые основания. На рисунке ниже представлена часть молекулы рибонуклеиновой кислоты.
Следует отметить, что молекулы ДНК обычно не только длиннее РНК, но и состоят из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями. Причем данные связи образуются согласно принципу комплементарности, по которому аденин комплементарен тимину, а гуанин — цитозину.
Подобные связи могут возникать и в РНК (но здесь аденин комплементарен урацилу). Однако в РНК водородные связи образуются между нуклеотидами одной цепи, в результате чего молекула нуклеиновой кислоты сворачивается различным образом.
Синтез ДНК. Репликация
Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.
В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее — комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.
Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:
- Расплетение спирали ДНК и расхождение нитей
- Присоединение праймеров
- Образование новой цепи ДНК дочерней нити
В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.
ДНК – хранитель генетической информации
Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.
Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.
ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот. Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований. Основание одной цепи притягивается водородной связью к основанию другой цепи.
Строение ДНК
Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.
Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.
Схема строения ДНК
В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.
Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.
Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.
- Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
- Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
- Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.
Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г. на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали». За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.
Параметры двойной спирали ДНК
Молекула РНК
Молекулы РНК клеток прокариот и эукариот состоят из одной цепи. Существуют три основных типа РНК, которые различаются местоположением в клетке, структурой и функциями в биосинтезе белка. Информационная, или матричная, РНК (иРНК, или мРНК) переносит наследственную информацию от ДНК к месту синтеза полипептидной цепи. Транспортная РНК (тРНК), которая из всех молекул РНК имеет наименьшие размеры (состоит из 70-90 нуклеотидов), транспортирует аминокислоты к месту синтеза белковых молекул. Рибосомная РНК (рРНК) входит в состав особых органических клеток — рибосом, которые обеспечивают синтез белковой молекулы. Бывают и другие типы РНК.
Ядерная ДНК сохраняется в ядре, там же синтезируются молекулы РНК. Далее РНК транспортируются из ядра клетки в цитоплазму, где синтезируются белки. Приводим сравнительную таблицу двух типов нуклеиновых кислот.
Особенности строения и локализация в клетке | ДНК | РНК |
Количество цепей | 2 | 1 |
Нуклеотидный состав полимера (название нуклеотида предоставляется по названию азотсодержащих основы) | (А) Адениловый (Г) Гуаниловый (Т) тимидиловый (Ц) Цитидиловый |
(А) Адениловый (Г) Гуаниловый (У) Урациловый (Ц) Цитидиловый |
Вещества, образующие нуклеотид | Азотсодержащая основа Ортофосфорная кислота Углевод — дезоксирибоза |
Азотсодержащая основа Ортофосфорная кислота Углевод — рибоза |
Локализация в эукариотической клетке | Ядро, Хлоропласты, Митохондрии | Ядро, Цитоплазма, Рибосомы, Хлоропласты, Митохондрии |
Связь ДНК в передаче генов
Мы часто слышим обвинения в адрес генов, когда речь заходит о дурных склонностях и привычках человека. Попробуем разобраться, что такое гены и какую роль играет ДНК в передаче наследственных данных, переносит ли она негативную информацию. Каковы же функции нуклеиновых кислот в клетке?
Ген – это особый участок молекулы ДНК, образующийся из уникальных сочетаний нуклеотидов. Каждый тип гена находится в специально отведенном для этого участке спирали ДНК, никуда не мигрируя. Число нуклеотидов в генах постоянно. Например, ген, отвечающий за синтез инсулина, в своем составе имеет 60 пар нуклеотидов.
Также в цепочке ДНК находятся т.н. «некодирующие последовательности». Роль их в передаче генетического материала не до конца установлена. Предполагается, что эти последовательности отвечают за порядок в работе генов и «закручивают» хромосомы.
Весь объем генов в организме носит название геном. Он в свою очередь равномерно распределяется в 46 парах молекул ДНК. Каждая такая пара называется хромосома. Следовательно, организм человека состоит из 46 пар хромосом, в которые вложена вся генетическая информация, начиная от внешности, заканчивая предрасположенностью к различным заболеваниям.
Хромосомы различаются по своей морфологии и размеру. Основных форм две – Х и У. Человеческий организм содержит парные хромосомы, т.е. каждая хромосома имеет свою точную копию. Таким образом, в норме мы имеем 23 парные хромосомы. Каждая хромосомная пара выполняет свою функцию, отвечая за конкретные признаки. 22 пары хромосом отвечают за соматические признаки и лишь одна за половые. Сочетание хромосом ХХ означает, что на свет появится девочка, а сочетание ХУ – мальчик.
Усиление катящегося круга
Молекулярный механизм усиления катящегося круга (RCA)
Производная форма репликации по катящемуся кругу успешно использовалась для амплификации ДНК из очень небольших количеств исходного материала. Этот метод усиления называется усилением по скользящему кругу (RCA). В отличие от традиционных методов амплификации ДНК, таких как полимеразная цепная реакция (ПЦР) , RCA — это метод изотермической амплификации нуклеиновых кислот, при котором полимераза непрерывно добавляет отдельные нуклеотиды к праймеру, отожженному к круговой матрице, что приводит к длинной конкатемерной оцДНК, содержащей от десятков до сотен тандемных повторов (дополняющих круговой шаблон).
Для проведения реакции RCA необходимы пять важных компонентов:
- ДНК-полимераза
- Подходящий буфер, совместимый с полимеразой.
- Короткий праймер для ДНК или РНК
- Круглый шаблон ДНК
- Дезоксинуклеотидтрифосфаты (дНТФ)
Методы обнаружения продукта RCA
Полимеразы, используемые в RCA, — это экзо- ДНК-полимераза Phi29 , Bst и Vent для амплификации ДНК и РНК-полимераза T7 для амплификации РНК. Поскольку ДНК-полимераза Phi29 имеет лучшую процессивность и способность замещения цепей среди всех вышеупомянутых полимераз, она наиболее часто используется в реакциях RCA. В отличие от полимеразной цепной реакции (ПЦР), RCA можно проводить при постоянной температуре (от комнатной температуры до 65 ° C) как в свободном растворе, так и на иммобилизованных мишенях (твердофазная амплификация).
Обычно реакция RCA ДНК включает три этапа:
- Циркулярное лигирование матрицы, которое можно проводить посредством ферментативного лигирования, опосредованного матрицей (например, ДНК-лигаза Т4), или лигирования без матрицы с использованием специальных ДНК-лигаз (например, CircLigase).
- Праймер- индуцированное удлинение одноцепочечной ДНК. Для гибридизации с одним кругом можно использовать несколько праймеров. В результате может быть инициировано несколько событий амплификации, в результате чего будет получено несколько продуктов RCA («Multiprimed RCA»).
- Обнаружение и визуализация продуктов амплификации, которые чаще всего проводятся с помощью флуоресцентного обнаружения, с помощью флуорофор-конъюгированного dNTP, связанных с флуорофором комплементарных или флуоресцентно меченных молекулярных маяков . Помимо флуоресцентных подходов, гель-электрофорез также широко используется для обнаружения продукта RCA.
RCA производит линейную амплификацию ДНК, поскольку каждая кольцевая матрица растет с заданной скоростью в течение определенного времени. Для увеличения выхода и достижения экспоненциальной амплификации, как это делает ПЦР, было исследовано несколько подходов. Одним из них является амплификация с гиперразветвленным катящимся кругом или HRCA, когда добавляются и удлиняются праймеры, которые отжигаются с исходными продуктами RCA. Таким образом, исходный RCA создает больше шаблонов, которые можно усилить. Другой — круговая амплификация или C2CA, где продукты RCA перевариваются рестрикционным ферментом и лигируются в новые кольцевые матрицы с использованием рестрикционного олиго, за которым следует новый цикл RCA с большим количеством кольцевых матриц для амплификации.
ДНК
Молекула ДНК — это двухцепочечная спираль, закрученная вокруг собственной оси.
В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и 3′-спиртовой группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между 3′-углеродом одного пентозного цикла и 5′-углеродом следующего.
Остов цепей ДНК образован, таким образом, сахарофосфатными остатками.
Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.
Цепи в молекуле ДНК противоположно направлены, т. е., если одна цепь имеет направление от 3′-конца к 5′-концу, то в другой цепи 3′-концу соответствует 5′-конец и наоборот. Это свойство биспирали ДНК называется антипараллельностью.
Впервые двухцепочечная модель молекулы ДНК была предложена в 1953 г. американским ученым Дж. Уотсоном и англичанином Ф. Криком. Он объединил данные Э. Чаргаффа о соотношении пуриновых и пиримидиновых оснований молекул ДНК и результаты рентгеноструктурного анализа, полученные М. Уилкинсом и Р. Франклин. За разработку двухспиральной модели молекулы ДНК Уотсон, Крик и Уилкинс были удостоены в 1962 г. Нобелевской премии.
ДНК — самые крупные биологические молекулы. Их длина составляет от 0,25 мм — у некоторых бактерий до 40 мм — у человека. Это значительно больше самой крупной молекулы белка, которая в развернутом виде достигает не более 100-200 нм. Масса молекулы ДНК составляет 6 ∙ 10-12 г.
Диаметр молекулы ДНК — 2 нм, шаг спирали — 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов. Спиральная структура поддерживается многочисленными водородными связями, возникающими между комплементарными азотистыми основаниями, и гидрофобными взаимодействиями. Молекулы ДНК эукариотических организмов линейны. У прокариот ДНК, напротив, замкнута в кольцо и не имеет ни 3′-, ни 5′-концов.
Подобно белкам при изменении условий ДНК может подвергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.
Функции ДНК
Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация о всех белках данного организма, о том, какие белки и в какой последовательности будут синтезироваться.
Нуклеиновые кислоты — что это в биологии
Было выяснено опытным путем, что молекулы нуклеиновых кислот способны переходить от одного простейшего организма к другому и передавать ему наследуемые признаки. Часть вирусов имеют рибонуклеиновые кислоты в качестве генетического материала. Но самая важная функция нуклеиновых кислот — это хранение и передача наследственной информации при размножении живых существ.
Какую роль играют в жизнедеятельности клетки
Генетическая информация, определяющая неповторимость любого организма — это информация о последовательности аминокислот в каждом из его белков. А содержится она в молекуле дезоксирибонуклеиновой кислоты, сокращенно ДНК. Последовательность структурных единиц ДНК, нуклеотидов, соответствует последовательности аминокислот в белке. Это взаимное соответствие называется генетическим кодом.
Определение
Аминокислоты — природные органические соединения, из которых построены белки. Половина из аминокислот — незаменимые, они не синтезируются в организме и должны поступать с продуктами питания.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
Рибонуклеиновая кислота, сокращенно РНК, играет роль посредника между ДНК и белком. Сведения, хранящиеся в ДНК, в результате химической реакции, спровоцированной промотором, переписываются в виде РНК. На участке ДНК, где идет синтез РНК, нити двойной спирали расплетены. По мере продвижения специального фермента, РНК-полимеразы, вдоль ДНК спираль восстанавливается.
Классификация типов РНК проводится по исполняемым функциям. РНК, в виде которой переписывается наследственная информация, получила название матричной. Она используется для получения белка много раз. Поэтому вдоль нее движется сразу несколько частиц РНК другого типа, каждая из которых делает свою копию белка.
РНК второго типа, рибосомная, управляет всем процессом синтеза белка. Она же выступает в роли «суперфермента», ускоряющего реакцию аминокислот между собой. Как и РНК-полимераза при переписывании наследственной информации, рибосомная РНК получает старт- и стоп-сигналы. Их подает матричная РНК.
Старт-сигнал представляет собой последовательность из пяти-восьми нуклеотидов, расположенную на расстоянии примерно в десять нуклеотидов от начала участка, который кодирует белок. Стоп-сигнал рибосомная РНК получает тогда, когда встречает особые тройки нуклеотидов: УАА, УГА и УАГ, не кодирующие аминокислоты. В клетке нет тех транспортных РНК, которые могли бы спариваться с ними своими петлями.
РНК третьего типа называют транспортной. Она составляет 15% всей клеточной РНК. Молекула транспортной РНК совсем маленькая, она состоит примерно из 75 нуклеотидов. С ее помощью между аминокислотами образуется химическая связь, т. е. появляется зародыш будущего белка. Далее аминокислоты будут присоединяться к растущей белковой цепочке по мере их поступления к месту синтеза.
Белковые цепочки, отрезанные от транспортной РНК, претерпевают в клетке дальнейшие изменения. Некоторые аминокислоты могут химически меняться, а сама цепочка иногда разрезается на части. Лишь в этом случае образуется полноценный белок. За последующую обработку только что произведенных белков в клетке отвечает множество различных ферментов.
Любопытные факты
- Единственный тип клеток, не содержащий ДНК, – это красные кровяные тельца.
- Структура нуклеиновых кислот настолько похожа, что западные ученые выдвинули теорию: на ранних этапах эволюционной истории человечества ответственность за хранение информации, передаваемой по наследству, несла РНК.
- Структурная формула молекулы ДНК была вычислена Д. Утсоном и Ф. Криком еще в 1953 году. И лишь спустя 9 лет эти ученые удостоились Нобелевской премии по медицине.
- За различия между людьми отвечает менее 1% всех молекул ДНК, входящих в геном человека. Поэтому выражение «все мы из одного теста» имеет под собой научное обоснование.
- Схожесть между ДНК человека и шимпанзе достигает 98%, а ДНК человека и свиньи совпадают на 96%.
- Полная расшифровка генома человека была завершена в 2003 году.
- Чтобы набрать на клавиатуре полный буквенный код генома человека, у вас уйдет 17 лет, с учетом того, что стучать по клавишам придется целыми сутками.
- Геном человека составляет 100% генов, из которых 50% достаются от матери и 50% от отца.
Строение и функции нуклеиновых кислот, урок биологии
Чем отличаются ДНК и РНК
Структура ДНК
Уотсон и Крик продемонстрировали, что по своей форме молекула ДНК напоминает винтовую лестницу, образующую двойную спираль. Каждая боковина «лестницы» состоит из многочисленных молекул сахара (дезоксирибозы), соединённых группами фосфатов. Эта сахарофосфатная цепь играет роль «кирпичика» в молекуле ДНК. «Перекладины» разделены надвое, при этом каждую половинку представляет один из четырёх химических элементов, называемых основаниями: аденин (А), гуанин (Г), цитозин (Ц) или тимин (Т). Основания прочно крепятся к боковинам, но очень слабо — к середине перекладин.
Соединения аденин и гуанин имеют два кольца и относятся к пуринам, имеющим отношение к мочевой кислоте (они присутствуют в моче). Цитозин и тимин — однокольцевые соединения, называемые пиримидинами (некоторые витамины группы В имеют структуру пиримидинов). Аденин всегда объединяется в пары с тимином, а гуанин — с цитозином, формируя полные поперечины лестницы ДНК. Вместе с сахарофосфатным «каркасом» каждая пара образует нуклеотид — основную единицу ДНК.
Указанные четыре основания — важнейшая часть молекулы ДНК, так как они содержат генетический код каждой клетки. Комбинации оснований определяют время формирования различных белков и задают функции клеток организма.
Хромосомы
На этой фотографии с усиленной расцветкой показаны хромосомы человека, состоящие из цепочек ДНК и белков (изображение увеличено примерно в 4000 раз). Эти нитевидные структуры присутствуют в каждой клетке человеческого организма
Хромосомы представляют собой длинные цепочки ДНК и белков, которые, соединяясь, образуют хроматин. ДНК плотно сжата в ядре клетки, а связующие белки (гистоны) образуют структуру, известную как нуклеосома. Нуклеосомы соединяются дополнительными цепями ДНК — так называемыми связующими ДНК. Хромосомы постоянно присутствуют в ядре, но обнаруживаются только в процессе деления клетки.
Синтез белка
Какие вещества могут хранить информацию о клетке, ее функциях, биологических и химических свойствах? Конечн, белки. Они являются уникальными компонентами любого живого организма. Биохимический синтез белка – это довольно сложный микропроцесс. Проходит он в три основных этапа:
- Транскрипция. Этот процесс протекает в ядре, и ответственность за него несет информационная РНК. Транскрипция заключается в считывании данных о будущем белке с генов, находящихся в ДНК, и переносе этих данных на информационную РНК. Далее иРНК транспортирует информацию в цитоплазму. Дезоксирибонуклеиновая кислота не имеет прямого отношения к биосинтезу белка, а только хранит и передает информацию. Во время транскрипции цепочки ДНК «расплетаются», а генетический материал считывается на РНК, с учетом парных комплексов азотистых оснований.
- Трансляция. Это окончательная стадия образования белковой молекулы. Информационная РНК через цитоплазму попадает в рибосомы, где и происходит сам биохимический синтез.
- Различные модификации полипептидной цепи. Происходят в результате совершившейся трансляции.
ДНК и РНК
Гены
Определённые последовательности пар оснований молекулы ДНК в хромосомах образуют гены. Эти единицы наследственности определяют, что новое поколение унаследует от своих предков. Например, конкретный ген отвечает за цвет глаз человека или окраску цветка у растений. Эти структуры также регулируют клеточную активность — они определяют, какие белки и когда формируются, а также количество и тип белков.
Разные клетки содержат одинаковые наборы генов, но только отдельные гены активны в каждой клетке. Так, мышечная клетка содержит те же гены, что и клетка мозга, но использует только те, что необходимы для её нормального функционирования.