Микробиологические исследования

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия: световая (в том числе фазово-контрастная, темнопольная, флуоресцентная) и электронная;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР, ДНК- и РНК-зонды и др.);
  • серологический метод — выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии — изучение структуры и свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Люминисцентное исследование

В 1925 г. Margaret и Deveze обнаружили, что волосы, пораженные некоторыми дерматофитами, дают характерное свечение в ультрафиолетовых лучах, пропущенных через фильтр Byда. Стекло Byда состоит из сульфата бария, содержит около 9% окиси никеля; оно пропускает лучи длиной 365 нм. В качестве источника ультрафиолетовых лучей можно использовать различные приборы. Природа свечения точно не установлена. Волос продолжает светиться после гибели гриба и после попыток экстрагировать флюоресцирующий материал горячей водой или холодным раствором бромида натрия. Интенсивность и характер свечения зависят от рН раствора. Полагают, что флюоресцирующая субстанция появляется в процессе взаимодействия гриба и растущего волоса.
Свечение в ультрафиолетовых лучах, пропущенных через фильтр Вуда, характерно только для волос, пораженных грибами рода Microsporum (M. canis, M. audouinii, M. ferrugineum, M. distortium, изредка M. gypseum и M. nanum), a также Trichophyton schonleinii. Волосы, пораженные микроспорумами, особенно M. canis и M. audouinii, дают наиболее яркое свечение; волосы, пораженные Т. schonleinii, имеют тусклую зеленоватую флюоресценцию.
Свечение наблюдается только в полностью пораженных грибом волосах. Его может не быть в свежих очагах поражения. В этих случаях следует эпилировать волосы из краевой, наиболее активной зоны, и свечение можно обнаружить в корневой части волос.
Люминесцентный метод можно использовать как для диагностики и контроля за эффективностью лечения у отдельных больных, так и в эпидемиологических очагах. Компактные передвижные установки удобны для обследования контактных людей в школах, детских садах и т. п.
Люминесцентное обследование необходимо производить в затемненной комнате, очаги поражения должны быть предварительно очищены от корок, остатков мази и т. п. Люминесцентный метод можно использовать для диагностики отрубевидного лишая, особенно при локализации очагов поражения на волосистой части головы. Очаги поражения при этом заболевании имеют красновато-желтое или бурое свечение. Это свечение, однако, не является строго специфичным, так как может наблюдаться при наличии перхоти на волосистой части головы и даже у здоровых людей в области устьев волосяных фолликулов на лице и верхней части туловища. Выявленные с помощью люминесцентного метода пораженные волосы должны обязательно подвергаться микроскопическому исследованию. 

Ферментация

Ферментация — это один из способов сохранить пищу и изменить ее качество. Дрожжи , особенно Saccharomyces cerevisiae , используются для закваски хлеба , варки пива и изготовления вина . Некоторые бактерии , в том числе молочнокислые бактерии , используются для приготовления йогурта , сыра , острого соуса , солений , ферментированных колбас и таких блюд, как кимчи . Общим эффектом этих ферментаций является то, что пищевой продукт становится менее восприимчивым к другим микроорганизмам , включая патогены и вызывающие порчу микроорганизмы, таким образом продлевая срок хранения продукта . Некоторым сортам сыров также требуется форма для созревания и развития их характерного вкуса .

Патогенность для животных

Патогенность микробов обычно определяют в опытах на белых мышах, морских свинках и кроликах. Животных заражают подкожно, внутрикожно, внутримышечно, внутривенно, интраперитонеально, перорально, интраназально или интрацеребрально (см. Биологическая проба).

При изучении патогенных микроорганизмов иногда требуется определить, образуют ли они экзотоксины. С этой целью на чувствительных животных испытывается фильтрат бактериальной культуры, выращенной в течение определенного срока на соответствующей жидкой среде. Экзотоксины высокотоксигенных бактерий (дифтерийной палочки, столбнячной бациллы, ботулинической бациллы и др.) вызывают заболевание животных с характерной клин, картиной и последующую их гибель с типичными патол ого анатомическими изменениями. Для обнаружения некоторых микробных экзотоксинов применяют культуры чувствительных к ним тканей, а также куриные эмбрионы. Нейтрализация экзотоксинов специфическими антитоксинами играет существенную роль при И. м.

Библиография: Красильников Н. А. Определитель бактерий и актиномицетов, М.—Л., 1949, библиогр.; Руководство по микробиологической диагностике инфекционных болезней, под ред. К. И. Матвеева, М., 1973; Тим а ков В. Д. и Гольдфарб Д. М. Основы экспериментальной медицинской бактериологии, М., 1958, библиогр.; Bergey’s manual of determinative bacteriology, ed. by R. E. Buchanan a. N. E. Gibbons, Baltimore, 1975, bibliogr.; Cowan S. T. a. Steel K. J. Manual for the identification of medical bacteria, Cambridge, 1974; Identification methods for microbiology, ed. by В. M. Gibbs a. F. A. Skinner, v. 1—2, L.— N. Y., 1966—1968; International code of nomenclature of bacteria, ed. by S. P. Lapage a. o., Washington, 1975; M e у n e 1 1 G. G. a. M e y n e 1 1 E. Theory and practice in experimental bacteriology, Cambridge, 1970, bibliogr.; Nomura M. Colicins and related bacteriocins, Ann. Rev. Microbiol., v. 21, p. 257, 1967, bibliogr.; W i 1-s o n G. S. a. M i 1 e s A. A. Topley and Wilson’s principles of bacteriology and immunity, v. 1—2, L., 1964.

Антигенная структура и отношение к бактериофагу

Антигенная структура и отношение к бактериофагу и бактерицинам изучаются на завершающем этапе И. м. Выявление антигенного строения микробов осуществляют при помощи различных серол, реакций, напр, реакции агглютинации (см.), реакции связывания комплемента (см.) и др.

Если в развернутой реакции агглютинации испытываемый микроб агглютинируется до титра иммунной сыворотки или половины титра, то на практике его можно считать принадлежащим к тому виду (типу), каким обозначена данная сыворотка. Для полной идентификации выделенный возбудитель должен агглютинироваться до титра иммунной сывороткой, приготовленной против эталонного микроба: испытуемый микроб должен адсорбировать из этой сыворотки все агглютинины. С другой стороны, эталонный микроб должен агглютинироваться до титра сывороткой, приготовленной против изучаемого микроба, и также адсорбировать из этой сыворотки все агглютинины. Иными словами, должна быть полная перекрестная агглютинация и перекрестная адсорбция между обеими сыворотками и обоими микробами. Реакция агглютинации иногда дополняется или заменяется реакцией преципитации (см.), а также реакцией непрямой гемагглютинации (с эритроцитами, нагруженными антителами). Серол, метод обнаруживает тончайшие различия между родственными микробами. Он часто является единственно доступным методом для дифференцирования подвидов или типов данного вида.

Широкое применение в лабораторной практике получили агглютинирующие монорецепторные сыворотки для идентификации сальмонелл, шигелл и других микробов. Весьма эффективно также применение метода иммунофлюоресценции (см.), который позволяет быстро (1 — 2 часа) осуществить И. м.

Чувствительным методом И. м. является типирование идентифицирующей культуры бактериофагом (см.). Этот метод используется, напр., при изучении брюшнотифозной палочки (см. Vi-брюшнотифозные фаги), т. к. позволяет распознавать фаготип в пределах вида. Специфические фаги применяют для дифференцирования шигелл, холерных вибрионов от холероподобных, классического холерного вибриона от вибриона Эль-Тор, чумной палочки от бактерий псевдотуберкулеза и других бактерий.

Для дифференцирования некоторых бактерий в пределах вида используют феномен бактериоциногении (см.), а также испытание чувствительности бактерий к бактерицинам различных типов (колицины, вибриоцины, пестицины, дифтериоцины и др.). Колицинотипирование нашло широкое применение для определения принадлежности выделенной культуры шигелл к определенному колицинотипу.

Микробиологический контроль объектов II группы

2. 1 Правила и порядок проведения микробиологического контроля продуктов

Для того, чтобы добиться точных результатов микробиологического исследования продуктов, необходимо проводить его с соблюдением следующих правил:

  • в процессе отбора исследуемых образцов нужно следовать рекомендациям, исключающим возможность заражения;
  • необходимо учитывать место и время, при которых был произведен забор образцового материала для анализа. От внешних факторов напрямую зависит численность микроорганизмов;
  • следует строго соблюдать временной период, в течение которого должно быть проведено исследование (либо немедленно после сбора материала, либо через 12 – 24 часа, сохраняясь в холодильной камере);
  • сопоставлять результаты микробиологического исследования, полученные из разных лабораторий, нужно только теми методами, которые указаны в соответствующих ГОСТах;
  • при осуществлении микробиологического исследования необходимо использовать комплексный подход (использовать все методы контроля);
  • при анализе как природных, так и искусственно созданных объектов, следует учитывать их физико – химические свойства.

Для выпуска качественных продуктов и оказания услуг высокого уровня необходим систематический биологический контроль на всех этапах деятельности и производства, который выполняется следующим образом:

  1. Забор микроорганизмов из среды производства.
  2. Посев (при необходимости).
  3. Сбор результатов.
  4. Анализ собранных данных.

В зависимости от сферы производства или деятельности, микробиологичсекому контролю продуктов могут подлежать следующие объекты:

  • вода (например, выращивание рыбы в искусственных водоемах);
  • воздух в производственных помещениях;
  • продукты питания;
  • техническое оборудование;
  • инвентарь;
  • рабочий персонал (чистота рук, рабочей одежды и пр.).

Микробиологический контроль продуктов могут осуществлять как собственные лаборатории предприятий, так и санэпидемстанции.

2.2 Методы микробиологических исследований

Методы микробиологического контроля продуктов направлены на выполнение двух задач:

  1. определение общего числа микробов и патогенов в исследуемой пробе;
  2. определение уровня загрязненности исследуемой пробы.

В микробиологии применяют два метода исследований для осуществления микробиологического контроля:

1. Прямой

Этот метод основан на использовании красителя (эритрозина), вводимого в исследуемый образец для вычисления количества патогенных микроорганизмов, учет которых проводится под камерами Петрова или с помощью электронных счетчиков. Прямой метод микробиологического контроля является самым точным, быстрым и надежным. Его удобно использовать в экстренных ситуациях (например, при аварии на линии водоснабжения), так как данный метод позволяет срочно выявить количество патологических организмов в тестируемом материале продукта.

Кроме достоинств, прямой метод микробиологического исследования продуктов имеет ряд недостатков. Среди них можно отметить следующие:

  • низкий уровень чувствительности и, как следствие, невозможность определить, являются ли патогенные клетки живыми или мертвыми;
  • нет возможности обнаружить субмикроскопические организмы;
  • результат исследования будет не точным в случае, если в исследуемых образцах будут находиться какие – либо примеси, загрязняющие объект изучения.

2. Косвенный

Данный метод заключается в определении общего числа микробов и санитарно–показательных микроорганизмов в продуктах. Хоть и опосредованно, но косвенный метод микробиологического контроля позволяет дать точный результат о наличии или отсутствии патогенных микроорганизмов, а также возможных угрозах для человека.

Общее микробное число предоставляет сведения о количестве жизнеспособных организмов, находящихся в 1 г или 1 мл исследуемого материала. Считается, что чем большее число общих микроорганизмов было обнаружено, тем выше вероятность наличия патогенных клеток.

Санитарно – показательные микроорганизмы позволяют оценить степень загрязнения объекта исследования фекалиями и выражаются в мл или г.

Сведения о читателях

Фамилия

Группа

Номерабонемента

Номер книги

Дата получения

Сорокина Л.Ю.

Э-114

1160

1257

06.09.02

Мухина Р.Д.

Э-114

1267

1268

06.09.02

Мусина Р.

Э-115

1540

1269

06.09.02

Мельникова М.;

Э-113

1590

1287

06.09.02

Шумилова Е.Г.

Э-115

2578

1489

06.09.02

Юмагулова Э.А.

Э-114

3124

1579

06.09.02

Урманова А.Р.

Э-113

3125

2100

06.09.02

Тюрина А

Э-114

5342

2234

06.09.02

Гончар А.Д.

Э-114

3214

2465

06.09.02

Кузнецова С.Р.

Э-114

3365

2541

06.09.02

Евсюкова Н.В.

Э-114

3687

2587

06.09.02

Данилова Е.Д.

Э-114

5487

2790

06.09.02

Елемова И.П.

Э-115

5497

2990

06.09.02

Головина О.Э.

Э-113

3697

3675

06.09.02

Бикташева С.А.

Э-113

5187

4122

06.09.02

Бабикова Р.Л.

Э-113

5214

5241

06.09.02

Бочкарёва О.Л.

Э-113

8216

5721

06.09.02

Коленченко Т.Н.

Э-114

5548

5732

06.09.02

Смакова О.Г.

Э-114

5268

8842

06.09.02

Безопасности пищевых продуктов

Микробиолог, работающий в лаборатории биобезопасности, проверяет наличие патогенов высокого риска в пищевых продуктах.

Безопасность пищевых продуктов является одним из основных направлений пищевой микробиологии. Многие возбудители болезней и патогены легко передаются через пищу, в том числе бактерии и вирусы . Микробные токсины также могут загрязнять пищу; Однако микроорганизмы и их продукты также можно использовать для борьбы с этими патогенными микробами. Пробиотические бактерии, в том числе те, которые продуцируют бактериоцины, могут убивать и подавлять патогены . В качестве альтернативы очищенные бактериоцины, такие как низин, можно добавлять непосредственно в пищевые продукты. Наконец, бактериофаги , вирусы, которые заражают только бактерии, могут быть использованы для уничтожения бактериальных патогенов . Тщательное приготовление пищи , в том числе правильное приготовление , уничтожает большинство бактерий и вирусов. Однако токсины, производимые загрязнителями, могут не переходить в нетоксичные формы при нагревании или приготовлении загрязненных пищевых продуктов из-за других условий безопасности.

Оборудование для микробиологического контроля качества продуктов

При осуществлении микробиологических исследований используют следующее оборудование:

  1. Ламинарный бокс (для очищения воздуха от пыли и других микрочастиц);
  2. Аналитические и лабораторные весы;
  3. Гомогенизаторы (для измельчения исследуемых масс);
  4. рН-метр;
  5. Автоклав (для стерилизации инвентаря и обеззараживания отходов);
  6. Термостат (для поддержания необходимого температурного режима в помещении);
  7. Холодильная камера (для хранения исследуемых организмов, реактивов и пр.);
  8. Водяная баня (для поддержания температурного режима и влажности);
  9. Сушильный шкаф;
  10. СО2-инкубатор (для исключения возможности появления новых микроорганизмов);
  11. Дистиллятор (для очистки воды);
  12. Микроскоп;
  13. Фильтрационная установка;
  14. Аспиратор (для забора воздушных масс);
  15. Вспомогательные инструменты (лабораторная посуда, дозаторы, мешалки и пр.).

Микробиологический контроль качества в продуктах – необходимая и неотъемлемая часть жизни человека. Без качественного, профессионального оборудования невозможно успешное проведение исследований и получение точных результатов. Компания «БиоВитрум» является ведущим производителем и поставщиком микробиологических приборов и необходимых компонентов и гарантирует надежность и качество своей продукции.

Ознакомиться с ассортиментом оборудования для микробиологии Вы можете здесь >>>.

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. — М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. — ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. — 2-е изд. перераб. и доп. — М.: Медицина, 2003. — 336 с. — (Учеб. лит. для студ. фарм. вузов). — ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н. А., Кочеровец В. И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. — СПб.: Проспект науки, 2008. — 288 с. — ISBN 978-5-903090-14-3
  • Гусев М. В., Минеева Л. А. Микробиология. — 9-е изд., стер. — М.: Издательский центр «Академия», 2010. — 464 с. — (Серия: Классическая учебная книга). — ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. — 4-е изд., стер. — М.: Издательский центр «Академия», 2003. — 464 с. — ISBN 5-7695-1403-5
  • Емцев В. Т., Мишустин Е. Н. Микробиология : учеб. для студ. вузов / В. Т. Емцев, Е. Н. Мишустин. — 6-е изд., испр. — М.: Дрофа, 2006. — 445 с. — (Высшее образование). — ISBN 5-358-00443-2.
  • Заварзин Г. А., Колотилова Н. Н. Введение в природоведческую микробиологию. — М.: Книжный дом «Университет», 2001. — 256 с. — ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». — М.: Изд-во МГУ, 1996. — 302 с. — ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. — Минск: БГУ, 2007. — 426 с. — ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. — М: изд-во УРСС, 2002. — 304 с. — ISBN 5-354-00010-6
  • Скороходов Л. Я. Материалы по истории медицинской микробиологии в дореволюционной России. — М. : Медгиз, 1948. — 356 с.
  • Скороходов Л. Я. Как развивалась микробиология. — М.: Медицина, 1965. — 50 с.

Особенности физиологии и биохимической активности

При определении биохимической активности микробов учитывают их отношение к кислороду, углекислоте и различным субстратам, оптимальную температуру роста, гемолитическую способность, а также влияние на их рост различных веществ, включая бактериальные факторы роста (см.). По отношению к свободному кислороду микробы обычно делят на строгие аэробы (см.), строгие и факультативные анаэробы (см.). Поэтому для выделения и идентификации возбудителя применяют специальные методы и питательные среды, способствующие росту только аэробных, факультативно-аэробных или анаэробных представителей.

Для большинства патогенных микробов оптимальная температура культивирования 37° (см. Бактерии).

Гемолитическая активность микробов определяется при выращивании их в чашках с кровяным агаром или же путем прибавления различных разведений бульонной культуры к взвеси отмытых эритроцитов.

Изучение влияния на рост бактерий различных биол, субстратов и хим. соединений (кровь, сыворотка, глюкоза, нитраты, соли желчных к-т, витамины, аминокислоты и др.) часто имеет значение для дифференциации этой группы микроорганизмов.

Для И. м. большое значение имеют особенности ферментативной активности микробов, выявляемые на средах, содержащих сахара и спирты, белковые субстраты и жиры (липолитические свойства), что позволяет выявить тончайшие различия между близкородственными микробами

Важно также определение редуцирующих свойств бактерий и их способности образовывать индол, аммиак и сероводород, использовать цитраты и тартраты (см. Дифференциально-диагностические среды).

Основные разделы микробиологии

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

  • Общая изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.
  • Техническая занимается разработкой биотехнологии синтеза микроорганизмами биологически активных веществ: белков, нуклеиновых кислот, антибиотиков, спиртов, ферментов, а также редких неорганических соединений.
  • Сельскохозяйственная исследует роль микроорганизмов в круговороте веществ, использует их для синтеза удобрений, борьбы с вредителями.
  • Ветеринарная изучает возбудителей заболеваний животных, методы диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение возбудителя инфекции в организме больного животного.
  • Медицинская микробиология изучает болезнетворные(патогенные) и условно-патогенные для человека микроорганизмы, а также разрабатывает методы микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.
  • Санитарная микробиология изучает санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков, и разрабатывает санитарно-микробиологические нормативы и методы индикации патогенных микроорганизмов в различных объектах и продуктах.

Иммунологическое и биологическое исследования

Иммунологические методы исследования используют для выявления специфической перестройки организма и серологической диагностики грибковых заболеваний. Для обнаружения специфических антител в сыворотке пробы проводят следующие серологические реакции: агглютинации, преципитации, связывания комплемента, иммунофлюоресценции с соответствующими антигенами.
Аллергическое состояние организма больного выявляют с помощью аллергических кожных проб. Аллергены наносят на скарифицированную кожу по Пирке или втиранием в кожу по Моро, внутрикожно по Манту, а также уколом в кожу. С помощью этих проб выявляют аллергические реакции как немедленного, так и замедленного типа, что позволяет оценить состояние гуморального и клеточного иммунитета.
Для выявления специфической сенсибилизации лимфоцитов используют реакции дегрануляции базофилов, агломерации и альтерации, тест бластной трансформации, подавления миграции макрофагов и т. п.
Сопоставление результатов серологических и аллергических реакций оказывается полезным как для диагностики, так и для прогноза течения микозов.Биологический метод. Используется для лабораторной диагностики глубоких и особо опасных микозов. Основан на заражении животных патологическим материалом от больного или культурой исследуемого гриба. Осуществляется в специальных лабораториях.

Морфологические и тинкториальныe свойства

Изучение морфол, и тинкториальных признаков микроба является обычно лишь первоначальной стадией его идентификации. Морфология микроорганизмов изучается путем микроскопии фиксированных и окрашенных препаратов, а также живых неокрашенных микроорганизмов в висячей или раздавленной капле.

Для длительного наблюдения за живыми бактериями применяют специальные камеры (Пешкова, Фонбрюна). Микроскопическое исследование позволяет определить форму, размеры и строение микроорганизмов, их взаимное расположение, подвижность, количество и распределение жгутиков, форму и положение спор, а также образование капсул. Для изучения подвижности берут молодые (не старше 6—8 час.) быстрорастущие бульонные культуры. Жгутики легче обнаруживаются в молодых агаровых культурах, споры, наоборот, в культурах, выращенных в течение нескольких суток, а капсулы — в патол, экссудатах. При микроскопии висячей капли лучше пользоваться темным полем или фазово-контрастным устройством. При этом следует учитывать, что формы и размеры микроорганизмов изменяются в зависимости от особенностей штамма, возраста культуры, состава среды, температуры инкубации и других факторов.

Тинкториальные свойства микробов определяют при окраске фиксированных препаратов. Окраска по Граму позволяет разделить все бактерии на 2 группы: грамотрицательные и грамположительные (см. Грама метод). Окраска по Цилю— Нельсену дает возможность дифференцировать кислотоустойчивые бактерии от некислотоустойчивых (см. Циля-Нельсена метод). С помощью специальных методов выявляют отдельные элементы бактериальной клетки: нуклеоид, протоплазму и включения (методы Романовского— Гимзы, Фейльгена, Робино и др.), метахроматические гранулы (см. Нейссера методы и др.), жгутики, капсулы и споры. Метод флюоресцирующих антител делает возможным предварительное определение вида и даже типа микроба (см. Иммунофлюоресценция) .

В случаях специфичности морфологии микроба путем микроскопического исследования можно предположительно идентифицировать его. В мед. микробиологии такого рода идентификация обоснована только тогда, когда она соответствует клин, диагнозу. Так, напр., кислотоустойчивые палочки в цереброспинальной жидкости больного с клин, симптомами менингита можно предварительно отнести к туберкулезным микобактериям. Грамотрицательные биполярно окрашивающиеся овоидные палочки в соке лимф, узлов больного с паховыми бубонами в местности, где распространена чума, можно рассматривать предположительно как чумные бактерии.

Культуральные свойства указывают на принадлежность микроба к определенной группе и намечают направление дальнейших исследований в целях его окончательной идентификации. Их определяют путем посева изучаемой культуры на питательные среды (агар, бульон, уколом в желатину и др.)

Из культуральных признаков бактерий и грибков важное значение имеют внешний вид и внутреннее строение колоний, формирующихся при высеве культуры на плотные питательные среды. Если микроб не дает роста на обычном мясопептонном агаре, то должна быть применена другая, оптимальная для него среда

Колонии обычно просматривают через 24 часа инкубации при t° 37°, а затем повторно с интервалом в 1 — 3 дня

При описании колоний обращают внимание на их размеры, цвет (пигментообразование), форму, профиль, поверхность, края, плотность. Если бактерии проявляют тенденцию к диссоциации на фазовые варианты (см

Диссоциация бактерий), то их разделяют путем рассева на чашках Петри с питательной средой. При росте на жидких питательных средах отмечают придонность роста, рост в виде пленки или равномерное помутнение среды. В некоторых случаях изучается рост на специальных средах, таких как сыворотка Леффлера, глицериновый картофель, среды, содержащие кровь, и др. Культуральные свойства микроба являются существенным дополнением к его морфол, признакам.

Что нужно запомнить

Пока ни один метод исследования микробиоты не используется в регулярной клинической практике. Иногда для полной картины врач может порекомендовать провести именно метагеномное исследование микробиоты, чтобы оценить состав бактерий кишечника.

Мы предупреждаем пользователей, что Тест микробиоты подходит только в образовательных целях и разработан для людей без диагностированных заболеваний. Если человек болен, то он сможет узнать состав бактерий, но рекомендации в этом случае будут не актуальны. Микробиота людей с заболеваниями сильно отличается, и для них «нормальный» профиль будет другим.

Мы не советуем проводить исследование детям, потому что по их микробиоте данных намного меньше. А лишнее вмешательство и ограничение рациона детей — потенциально опасно, так как ребенок может недополучать необходимых нутриентов или пострадать от гипердиагностики.Сегодня жителям России и стран СНГ предлагают исследование метаболитов микробиоты для детей и взрослых по образцу крови или слюны методом газовой хроматографии и масс-спектрометрии. По его результатам, как утверждают разработчики этого метода, можно оценить наличие и отсутствие воспалений в организме.

Однако в международных клинических гайдлайнах нет подобных рекомендаций. Диагностика воспалений и заболеваний должна проводиться методами, которые имеют высокий уровень доказательности, определенную степень чувствительности, низкую вероятность ложноположительных результатов и осложнений гипердиагностики.

Чтобы узнать, какие бактерии живут в вашем кишечнике, в Тесте микробиоты мы используем наиболее изученную технологию 16S рРНК. Сейчас на тест действует акция. Используйте также промокод blog10 для дополнительной скидки 10%.

1.Angelakis, E., Armougom, F., Million, M. & Raoult, D. The relationship between gut microbiota and weight gain in humans. Future Microbiology 7, 91–109 (2012).

С чего началось изучение микробиоты

В XVII веке создатель микроскопа и «отец микробиологии» Антони Ван Левенгук впервые рассмотрел и описал бактерии полости рта и фекалий. Тогда он назвал их «анималькули».В 1828 году Кристиан Эренберг вводит новый термин Bacterium. В тот момент он изучал кишечную палочку (Escherichia coli) — вид бактерий без спор. Для спорообразующих бактерий Кристиан придумал термин Bacillus. Этот вид бактерий активно изучал Роберт Кох. Он же выявил взаимосвязь между патогенными представителями этого рода и заболеваниями, такими как сибирская язва и туберкулез.Уже в XIX веке исследователям было понятно, что здоровье человека тесно связано с бактериями. Однако полноценно изучать микробиоту стало возможно после открытия технологии секвенирования генов Фредериком Сенгером. В чашках Петри способны жить и расти далеко не все виды, поэтому подробно классифицировать и определить функции бактерий было сложно.

Трехминутный фильм о микроорганизмах

Одновременно с развитием технологий в 70-х годах микробиолог Карл Вёзе предложил классифицировать микроорганизмы на основе секвенирования молекулы 16s рРНК, по которой удобно определять степень родства. По данным анализа Карл разделил все микроорганизмы на археи, бактерии и эукариоты. Эта классификация используется и сейчас.Эукариоты отличаются наличием ядра, а у бактерий и архей его нет. Археи — это простые одноклеточные микроорганизмы, которые живут в экстремальных условиях — в гейзерах, на дне морей и океанов. А еще они самые древние: археи существуют на Земле примерно четыре миллиарда лет.

В кишечнике человека археи производят метан. Также чем их больше, тем ниже риск ожирения, но причинно-следственная связь остается неясной. Археи есть далеко не у всех и редко выходят за пределы 1–2%. Бактерии живут в самых разных средах и мы контактируем с ними намного больше, чем с археями. Они отличаются рядом функций. Например, бактерии могут разрывать молекулы углеводов и производить жирные кислоты, а археи — нет.

Взятие материала для лабораторного исследования на грибок

Взятие ногтей на исследование:
— взять ножницы и предметные стекла;
— ножницами отрезать кусочек от свободного края ногтя;
— взятый материал покрыть другим предметным стеклом;
— ножницы и пинцет замочить в 3% растворе формалина.

Правильный сбор материала из пораженных ногтей — залог успешного микробиологического исследования. Забирая материал, не всегда захватывают участки ногтя, содержащие жизнеспособные грибы. Нежизнеспособные грибы в культуре, естественно, не вырастут, и их вид установить не удастся.
Участок ногтя, который надо взять, определяется формой онихомикоза.
Так, при поверхностной форме онихомикоза следует делать соскобы с поверхности ногтевой пластинки.
При самой распространенной дистальной подногтевой форме наиболее жизнеспособные грибы располагаются под ногтевой пластинкой. Материал, который направляют на исследование, должен включать не только обрезок ногтевой пластинки, но и соскоб с ногтевого ложа, из-под пластинки.
Кроме того, следует захватывать и области неизмененного ногтя, поскольку на границе между ними и пораженными участками ногтя располагаются самые активные грибы.
При проксимальной подногтевой форме брать материал трудно. В этих случаях иногда, особенно если собираются проводить гистологическое исследование или дифференциальную диагностику, предпринимают биопсию ногтя, изредка используют бормашину.
При паронихиях делают соскобы с проксимального валика и из-под него.
Во всех случаях, чтобы избежать бактериальной контаминации, перед взятием образца следует обработать ноготь этиловым спиртом.
 

Подгруппы бактерий, влияющих на пищу

При изучении бактерий в пищевых продуктах важные группы были подразделены на основе определенных характеристик. Эти группировки не имеют таксономического значения:

Молочнокислые бактерии — это бактерии, которые используют углеводы для производства молочной кислоты. Основные роды — Lactococcus , Leuconostoc , Pediococcus , Lactobacillus и Streptococcus thermophilus .

Бактерии уксусной кислоты, такие как Acetobacter aceti, производят уксусную кислоту .

Бактерии , вырабатывающие пропионовую кислоту , такие как Propionibacterium freudenreichii , используются для ферментации молочных продуктов.

Некоторые виды Clostridium spp. Clostridium butyricum продуцирует масляную кислоту .

Протеолитические бактерии гидролизуют белки, производя внеклеточные протеиназы . Эта группа включает виды бактерий из родов Micrococcus , Staphylococcus , Bacillus , Clostridium , Pseudomonas , Alteromonas , Flavobacterium и Alcaligenes , а также некоторые виды бактерий из родов Entereobacteriaceae и Brevibacterium .

Липолитические бактерии гидролизуют триглицериды , продуцируя внеклеточные липазы . В эту группу входят виды бактерий из родов Micrococcus, Staphylococcus, Pseudomonas, Alteromonas и Flavobacterium.

Сахаролитические бактерии гидролизуют сложные углеводы . В эту группу входят виды бактерий из родов Bacillus , Clostridium , Aeromonas , Pseudomonas и Enterobacter .

Термофильные бактерии , включая роды Bacillus, Clostridium, Pediococcus , Streptococcus и Lactobacillus , способны процветать при высоких температурах выше 50 по Цельсию . Термодурические бактерии , включая споры, могут пережить пастеризацию . Бактерии , которые растут в холодных температурах ниже 5 Цельсия называются психотропными и включают в себя бактерии видов из многих родов , включая Alcaligenes , Serratia , Leuconostoc , Carnobacterium , Brochothrix , Listeria и Yersinia .

Галотолерантные бактерии могут выжить при высоких концентрациях соли более 10%. Сюда входят некоторые виды Vibrio и Corynebacterium . Ацидурические бактерии выживают при низком pH.

Осмофильные бактерии, хотя и менее осмофильны, чем дрожжи и плесень, могут переносить относительно более высокую осмотическую среду. Аэробам нужен кислород, а анаэробам он подавляется. Факультативные анаэробы могут расти как с кислородом, так и без него.

Некоторые бактерии могут выделять газы при метаболизме питательных веществ, другие производят слизь, синтезируя полисахариды.

Бактерии, продуцирующие споры, делятся на подгруппы: аэробные, анаэробные, кислые, термофильные и продуцирующие сульфиды.

Колиформные бактерии, в том числе фекальные колиформные бактерии (например , кишечная палочка ), используются в качестве меры санитарии. Кишечные патогены могут вызывать желудочно-кишечные инфекции и могут быть включены в эту группу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector