Резистентность к антибиотикам: война на выживание

Сдерживание распространения антибиотикорезистентности

Антибиотики на сегодняшний день являются одной из самых часто применяющихся групп лекарственных средств. По данным Ассоциации международных фармацевтических производителей и ГК Ремедиум в 2014 году системные антибиотики в России занимали 4-е место в структуре амбулаторных и 2-е место в структуре госпитальных продаж готовых лекарственных средств.

Системные антибиотики в России, как и в большинстве развитых стран мира, относятся к лекарственным препаратам рецептурного отпуска, однако это требование далеко не всегда соблюдается. Недавнее исследование в рамках проводимой информационной кампании “Антибиотик надежное оружие, если цель бактериальная инфекция” показало, что 57% провизоров и фармацевтов аптечных учреждений Смоленска согласились продать антибиотик пациенту с симптомами острой респираторной инфекции без назначения врача. Более 60% опрошенных жителей Смоленска сообщили, что принимают антибиотики без назначения врача; у 38% опрошенных есть антибиотики в домашней аптечке. Таким образом, возможность свободного доступа стимулирует широкое использование антибиотиков населением для самолечения, что означает высокую вероятность их избыточного применения, ошибок при выборе препарата, дозы, длительности лечения.

В настоящее время во всем мире идет поиск альтернативных подходов к терапии инфекционных заболеваний. Одним из перспективных направлений в борьбе с инфекциями является применение бактериофагов и их компонентов. Бактериофаги природных штаммов и искусственно синтезированные генетически модифицированные фаги с новыми свойствами инфицируют и обезвреживают бактериальные клетки. Фаголизины – это ферменты, которые используются бактериофагами для разрушения клеточной стенки бактерий. Ожидается, что препараты на основе бактериофагов и фаголизинов позволят справиться с устойчивыми к АМП микроорганизмами, однако эти препараты появятся не ранее 2022-2023 гг. Параллельно с этим идет разработка препаратов на основе антибактериальных пептидов и вакцин для лечения инфекций, вызванных C. difficile, S. aureus, P. aeruginosa .

В последние годы резко возросла поддержка со стороны органов исполнительной и законодательной власти, а также Министерства здравоохранения Российской Федерации исследований, направленных на сдерживание антибиотикорезистентности. Так, например, Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ) и Федеральный научно-методический центр мониторинга резистентности к антимикробным препаратам активно занимаются разработкой страте гических направлений по данной проблеме.

На международный уровень обсуждение данной проблемы вышло на рубеже веков. В 2001 году ВОЗ опубликовала Глобальную стратегию по сдерживанию устойчивости к противомикробным препаратам, а в 2016 году вопрос борьбы с растущей угрозой антибиотикорезистентности был вынесен на повестку дня Генеральной Ассамблеи ООН.

Входящие в ООН государства в совместном заявлении обязались разработать национальные планы мер по противодействию устойчивости микроорганизмов к АМП. Это подразумевает усиление мониторинга лекарственноустойчивых инфекций и контроля за применением АМП в медицине, ветеринарии и сельском хозяйстве, а также укрепление международного сотрудничества и финансирования. Также члены организации взяли на себя обязательства ужесточить законодательное регулирование применения АМП, заниматься поиском рационального их использования (улучшение диагностики инфекций с учетом их чувствительности к препаратам) и широко внедрять меры профилактики инфекционных заболеваний (вакцинация, очистка воды, санитария, должный уровень гигиены в стационарах и на фермах) .

Почему устойчивость к противомикробным препаратам вызывает обеспокоенность во всем мире?

Появление и распространение невосприимчивых к лекарствам патогенов, у которых выработались новые механизмы резистентности к противомикробным препаратам, продолжают ограничивать наши возможности для лечения распространенных инфекций. Особенно тревожной
тенденцией является быстрое распространение в мире бактерий с множественной или тотальной устойчивостью (так называемых «супербактерий»), которые вызывают инфекции, не поддающиеся лечению существующими противомикробными препаратами, в
частности антибиотиками.

Портфель клинических разработок новых противомикробных препаратов крайне мал. В 2019 г. ВОЗ выявила 32 антибиотика, которые находятся на этапе клинической разработки и предназначены для лечения болезнетворных возбудителей, включенных в
список приоритетных патогенов ВОЗ, из которых только шесть антибиотиков отнесены в категории инновационных. Кроме того, серьезной проблемой остается недостаточная доступность качественных противомикробных препаратов. Нехватку антибиотиков испытывают
страны всех уровней развития, и особенно учреждения систем здравоохранения стран.

По мере распространения лекарственной устойчивости во всем мире эффективность антибиотиков неуклонно снижается, и это приводит к появлению трудноизлечимых инфекций и смерти людей. Существует острая потребность в новых противомикробных препаратах, например
для лечения карбапенем-резистентных грамотрицательных бактериальных инфекций, внесенных ВОЗ в список приоритетных патогенов. Вместе с тем без изменения нынешней практики использования антибиотиков человеком новые антибиотики, как и нынешние, будут
утрачивать свою эффективность.

УПП наносит значительный урон экономике и системам здравоохранения стран, поскольку уменьшает производительность пациентов и ухаживающих за ними лиц в связи с удлинением сроков госпитализации и потребностью в более дорогостоящих и интенсивных видах терапии.

Без эффективных инструментов профилактики и надлежащего лечения лекарственно устойчивых инфекций и расширения доступа к существующим и новым качественным противомикробным препаратам число людей, не излечивающихся или умирающих от инфекций, будет расти.
Более рискованными станут такие медицинские вмешательства, как хирургические операции, в том числе кесарево сечение или эндопротезирование тазобедренного сустава, химиотерапия онкологических заболеваний и трансплантация органов.

Высокий уровень приоритетности

  1. Enterococcus faecium
  2. Staphylococcus aureus
  3. Helicobacter pylori
  4. Campylobacter spp.
  5. Salmonellae
  6. Neisseria gonorrhoeae

Бактерии второй группы объединены по признаку повсеместного распространения, высокой социально-экономической значимости вызываемых ими заболеваний и быстрого развития резистентности к основным антибиотикам, используемым для их эрадикации, однако в резерве еще остается один или несколько эффективных препаратов.

Enterococcus faecium

E. faecium входит в состав нормальной микрофлоры кишечника, но в то же время является условно-патогенным микроорганизмом. У ослабленных больных может вызывать инфекции мочевыводящих путей, раневую инфекцию, сепсис и эндокардит. Резистентен к аминогликозидам, пенициллинам и цефалоспоринам. Беспокойство вызывает снижение чувствительности к ванкомицину — до 72 % в отдельных популяциях. Большинство штаммов E. faecium чувствительны к линезолиду, тигециклину, даптомицину.

Staphylococcus aureus

Золотистый стафилококк, колонизирующий кожу и слизистые оболочки, способен вызывать тяжелые инфекции кожи и мягких тканей, респираторные, раневые инфекции, остеомиелит, сепсис, артрит, эндокардит. Недавнее появление и распространение ванкомицин- и гликопептид-резистентных штаммов в дополнение метициллин-резистентному S. aureus значительно сужает выбор антибактериальных препаратов, однако у возбудителя сохраняется чувствительность к аминогликозидам, эритромицину, тетрациклину, ко-тримоксазолу, линезолиду.

Helicobacter pylori

Тревогу ВОЗ вызывает увеличение случаев резистентности всем известной H. pylori к кларитромицину, что сказывается на эффективности традиционных схем эрадикационной терапии, в том числе и в России. Перед эрадикацией ВОЗ рекомендует проверить чувствительность бактерии к этому антибиотику, при выявлении устойчивости — использовать схемы без него — с метронидазолом, тетрациклином или рифаксимином, а также добавлять висмута трикалия дицитрат.

Campylobacter spp.

Бактерии рода Campylobacter удерживают первое место в мире по гастроэнтеритам, которые у большинства населения планеты протекают в легкой форме, но представляют опасность для маленьких детей, беременных, стариков и иммунокомпрометированных больных. В большинстве случаев достаточно регидратации и восстановления электролитного баланса, антибактериальную терапию назначают при тяжелом течении. Проблемой является резистентность Campylobacter к фторхинолонам, основному средству борьбы с кишечной микрофлорой, и макролидам. Устойчивость к этим препаратам, впрочем, сильно варьирует от страны к стране — от менее 5 % в Финляндии до более 90 % в Индии. В Европе и России эритромицин всё еще остается препаратом выбора. По данным микробилогических исследований, в России также еще вполне актуальны фторхинолоны. В запасе для особо тяжелых случаев с осложнениями — гентамицин и карбапенемы.

Salmonellae

Представители рода сальмонелл также вызывают набор кишечных инфекций, от легкого энтерита до брюшного тифа. Большинство этих бактерий уже резистентны к бета-лактамам, аминогликозидам, тетрациклинам, хлорамфениколу и ко-тримоксазолу. Устойчивость к фторхинолонам растет во всем мире, но пока не привела к полной бесполезности этих препаратов, они остаются антибиотиками выбора, наравне с макролидами и цефалоспоринами третьего поколения. Антибактериальной терапии требуют только тяжелые случаи кишечных инфекций и, конечно, брюшной тиф и паратифы.

Neisseria gonorrhoeae

Гонорея из неприятной, но относительно легко излечимой болезни эволюционировала в глобальную медицинскую проблему. Гонококк потерял чувствительность к пенициллинам, тетрациклинам, сульфаниламидам и фторхинолонам.

Особое опасение вызывает появление и постепенное распространение штаммов, резистентных к цефалоспоринам (цефтриаксону), долгое время служивших безотказным средством борьбы с этой инфекцией. При резистентной к стандартным схемам лечения гонорее рекомендовано использовать комбинацию азитромицина с высокими дозами цефтриаксона. В России гонококк также практически резистентен к фторхинолонам, но пока сохраняет 100 %-ную чувствительность к цефтриаксону.

Для чего нужен анализ на чувствительность к антибиотикам

Микроорганизмы по отношению к конкретному виду антибиотика могут характеризоваться как чувствительные, условно-устойчивые и устойчивые. Чувствительными патогенными микроорганизмами являются те, что подавляются рекомендованными дозами антибактериального препарата. Условно-устойчивые для подавления требуют увеличение дозы. Активность устойчивых патогенных микроорганизмов не подавляется даже повышенными дозами антибиотика.

Чувствительность микрофлоры к антибиотикам индивидуальна: у разных людей бактерии могут реагировать на одни и те же антибиотики по-разному. Поэтому назначение антибактериальных препаратов на основании лишь среднестатистической картины не всегда дает желаемый лечебный эффект. Между тем любой антибиотик – это серьезное лечебное средство, обладающее побочными действиями. В частности, при его применении гибнут не только патогенные бактерии, но и полезные микроорганизмы. Может получиться ситуация, когда антибиотик уничтожит полезную микрофлору, а возбудитель заболевания не пострадает – по причине его устойчивости к данному антибиотику.

Чтобы обеспечить эффективность проводимого курса антибактериальной терапии, врач должен быть уверен, что назначаемый им антибиотик действительно справится с выявленным возбудителем заболевания.  Для этого и нужен анализ на чувствительность к антибиотикам.

Обезопасить половую жизнь

Инфекции, передающиеся половым путем, также относятся к болезням, которые становится все сложнее лечить в связи с ростом антибиотикорезистентоности. Особую опасность в последние годы представляют устойчивые штаммы гонококка, возбудителя гонореи. Возбудители сифилиса и хламидиоза также демонстрируют признаки устойчивости. 

Один из важнейших методов профилактики этих инфекций — использование презервативов. Кроме того, при симптомах половых инфекций следует своевременно обращаться к врачам. ###Следить за зубами и деснами Антибиотики широко применяются в лечении осложнений кариеса и болезней околозубных тканей. Огромная часть таких назначений неоправданна, и стоматологи должны помнить об этом. Каждый из нас внесет вклад в уменьшение использования антибиотиков, если будет поддерживать гигиену полости рта на надлежащем уровне и профилактически посещать стоматолога. Есть данные, указывающие, что триклозан — антисептик, применяющиеся, в том числе, в зубных пастах — может[вызывать устойчивость бактерий к антибиотикам. Возможно, отказ от продуктов с триклозаном может помочь проблеме. Но сегодня сложно говорить об этом обоснованно. 

Мыть руки

Мытье рук может предупредить около 30% заболеваний, сопровождающихся диареей, и 20% респираторных инфекций. Чрезмерное назначение антибиотиков очень распространено при этих состояниях

Особенно важно мыть руки после посещения лечебных учреждений, чтобы предупредить распространение устойчивых госпитальных штаммов бактерий. 

Следить за безопасностью питания Рекомендации ВОЗ по безопасному питанию подразумевают следование пяти правилам: нужно поддерживать чистоту при готовке, разделять приготовленное и сырое, хорошо проваривать и прожаривать пищу, хранить продукты при безопасной температуре, выбирать свежие и непорченые продукты).

Они направлены на уменьшение количества диарейных заболеваний. Кроме этого, ВОЗ рекомендует по возможности использовать продукты, произведенные без использования антибиотиков.

Приведенные советы дают возможность любому включиться в борьбу с антибиотикорезистентностью — опасностью, которая угрожает каждому уже сегодня, а в будущем может превратиться в крупнейшее бедствие.

Продолжительность терапии

Продолжительность лечения любой инфекции не является ясным вопросом; однако, в целом, рассмотрите более высокие дозы, меньшие интервалы и по возможности меньшую продолжительность.

Пиелонефрит. Критерии интерпретации пункции мочевого пузыря должны быть основаны на сыворотке. Лечение должно быть начато немедленно. При наличии вспомогательных данных области разумным первым выбором является лечение фторхилононом, выводимым в моче в активной форме (например, не дифлоксацин). При восходящей инфекции можно рассмотреть предварительный диагноз нижней ИМП на основе полученных результатов культуры мочи; при гематогенной инфекции начальная терапия должна базироваться на культурах крови или инфицированного участка. Часто рекомендуется лечение в течение 4-6 недель, хотя может быть эффективна меньшая продолжительность терапии. Следует выполнить анализ мочи и культуры через 1 неделю после начала лечения вследствие потенциальной тяжести заболевания и длительного периода лечения. Если будет изолирован тот же организм, следует рассмотреть добавление по возможности  антибактериального препарата, к которому организм чувствителен в лабораторных условиях.  Рекомендуется консультация специалиста.

Мультирезистентные инфекции. Организмы (например, различные энтеробактерии, стафилококки и энтерококки) могут представлять проблему для здравоохранения в отношении возможности зоонозной передачи резистентных патогенов. Поддерживается продуманное применение препаратов людьми при соблюдении определенных критериев (см. опубликованные рекомендации).

Устойчивость к аминогликозидам

Аминогликозиды, используемые в клин. практике, могут быть инактивированы за счет одной из следующих реакций: ацетилирования, фосфорилирования или аденилирования, каждая из которых катализируется ферментами, контролируемыми генами, находящимися в составе R-плазмид (табл.)

Таблица. Ферменты, кодируемые плазмидами, модифицирующие аминогликозидные антибиотики

Ферменты, кодируемые плазмидами и модифицирующие
аминогликозидные антибиотики

Модифицируемые антибиотики

3′-0-фосфотрансфераза

Неомицин, канамицин

3″-0-фосфотрансфераза

Стрептомицин

5″-0-фосфотрансфераза

Рибостамицин

2″-0-фосфотрансфераза

Гентамицин

2″-0-аденилтрансфераза

Гентамицин, тобрамицин

4′-0-аденилтрансфераза

Амикацин, тобрамицин

З»-0-аденилтрансфераза

Стрептомицин, спектиномицин

6′-0-аденилтрансфераза

Стрептомицин

6′-N-ацетилтрансфераза

Амикацин, тобрамицин

2′-N-ацетилтрансфераза

Гентамицин, тобрамицин

3′-N-ацетилтрансфераза

Гентамицин,тобрамицин

Предполагается, что ферменты, модифицирующие аминогликозидные антибиотики, локализованы в клетке на внутренней мембране, т. к. они могут быть освобождены в среду при отмывании холодной водой бактерий, обработанных сахарозой и трис-ЭДТА. Присутствие на внутренней мембране бактерий ферментов, модифицирующих аминогликозидные антибиотики, предотвращает, вероятно, их транспорт к рибосомам, представляющим мишень действия этих антибиотиков. С другой стороны, предполагалось, что модификация аминогликозидного антибиотика приводит к его инактивации. Накапливается все больше данных о возможной роли модифицирующих ферментов в нарушении транспорта аминогликозидных антибиотиков в клетку. Действительно, имеются результаты, указывающие, что полная инактивация антибиотика под влиянием модифицирующего фермента не наступает, а вместе с тем бактерия оказывается устойчивой к его действию. Уровень устойчивости к аминогликозидным антибиотикам, обусловленный R-плазмидами (см. R-фактор), колеблется от 20 до 5000 мкг/мл.

Эти колебания определяются многими причинами. Известно, что штаммы R+-бактерий, инактивирующие стрептомицин и канамицин путем фосфорилирования, характеризуются более высоким уровнем устойчивости к этим антибиотикам, чем этот же штамм, несущий другую плазмиду и инактивирующий антибиотики путем аденилирования. Различия в уровнях устойчивости к аминогликозидным антибиотикам могут быть обусловлены разным уровнем ферментативной активности, а именно: повышение последней может быть результатом увеличения в клетке числа копий плазмиды и, следовательно, числа генов, кодирующих модифицирующий фермент. Снижение уровня устойчивости к антибиотику может возникнуть в результате нарушения процесса выражения гена, определяющего устойчивость к данному антибиотику. Это часто наблюдают при переносе R-плазмиды из бактерии одного вида в бактерию другого вида. Расшифровка биохим, механизмов инактивации антибиотиков послужила стимулом для поиска новых препаратов, устойчивых к действию известных ферментов, определяющих резистентность бактерий. Так, напр., гентамицин, тобрамицин, ливидомицин А и Б активны в отношении бактерий, устойчивых к неомнцину и канамицину. Это определяется тем, что ферменты фосфорилирования, инактивирующие неомицин и канамицин, модифицируют 3′-OH группу аминогексозы, к-рая отсутствует в молекуле гентамицина и других упомянутых антибиотиков.

Механизм лекарственной устойчивости грибков и простейших

Механизм лекарственной устойчивости грибков и простейших, являющихся по структурной организации эукариотами, изучен менее подробно, чем у прокариотов. Их устойчивость также может быть вызвана изменением (отсутствием) соответствующих структурных компонентов- клетки, синтез которых ингибируется препаратом, или обусловлена выработкой ферментов, модифицирующих препарат. Напр., хлорамфеникол — ингибитор синтеза белка — подавляет рост прокариотической клетки, но не действует на эукариотическую клетку из-за отличий в аппарате, синтезирующем белок. Показано, что этот антибиотик соединяется с рибосомами чувствительных микроорганизмов, но не связывается рибосомами устойчивых форм.

Особенностью лекарственной устойчивости у грибков и простейших является се медленное развитие и появление лишь после многочисленных пересевов в присутствии антибиотика. Это было отмечено в отношении антибиотика нистатина и грибков, дрожжей и лейшманий. У некоторых видов дрожжеподобных грибков рода Candida удавалось получить in vitro устойчивые штаммы к антибиотику трихомицину. Однако в клинике повышенная устойчивость трихомонад и Candida к трихомицину не установлена. Относительная трудность выделения резистентных к антибиотикам штаммов грибков и простейших в сравнении с бактериями, вероятно, связана с отсутствием у них плазмид, контролирующих одновременную устойчивость к нескольким лекарственным препаратам и обладающих способностью транспортироваться из клеток, носителей плазмид, в бесплазмидные.

Сведения о лекарственной устойчивости вирусов весьма ограничены, т. к. химиотерапия вирусных инфекций находится в ранней стадии своего развития из-за отсутствия средств, специфически действующих па метаболизм вирусов, без отрицательного влияния на клетку. Тем не менее в ряде случаев удалось показать принципиальную возможность развития устойчивости некоторых вирусов к препаратам, угнетающим синтез вирусных макромолекул. Так, гуанидин и 2-(альфа-оксибензил)бензимидазол известны как средства, избирательно подавляющие пикорнавирусы и не влияющие на клетку. Механизм действия этих соединений скорее всего связан с первичным угнетением синтеза вирусной РНК. Однако практическое использование этих соединений ограничено высокой частотой появления мутантов вируса, синтез РНК которых устойчив к действию указанных ингибиторов, а у некоторых из мутантов стимулируется этими соединениями.

Библиография: Гершанович В. Н. О механизмах поступления антибиотиков в бактерии, Усп. совр, биол., т. 84, в. 3(6), с. 453, 1977, библиогр.; Гольдфарб Д. М. и Купцова Н. В. Выражение гена резистентности к тетрациклину плазмид R6 и RP4 в бактериях семейства Enterobacteriaceae, Антибиотики, т. 24, №4, с. 273, 1 979; Навашин С. М. и Фомина И. П. Справочник по антибиотикам, с. 11, М., 1974; Терешин. Преодоление лекарственной устойчивости возбудителей инфекционных заболеваний, Л., 1977; Acаr J. F. а. Sabath L. D. Bacterial persistense in vivo, resistance or tolerance to antibiotics, Scand. J. infect. Bis., suppl. 14, p. 86, 1978; Benveniste R.a. Davies J. Mechanisms of antibiotic resistance in bacteria, Ann. Rev. Biochem., v. 42, p. 471, 1973, bibliogr.; Davies J., Courvalin P. a. Berg D. Thougths on the origins of resistance plasmids, J. Antimicrob. Chemother., v. 3, suppl. C., p. 7, 1977, bibliogr.; Franklin T. J. Resistance of Escherichia coli to tetracyclines, Biochem. J., v. 105, p. 371, 1967; Microbial drug resistance, ed. by S. Mit-suhashi a. H. Hashimoto, Baltimore a. o., 1975; Tait R. С. а. Boyer H. W. On the nature of tetracycline resistance, controlled by plasmid pSC 101, Cell, v. 13, p. 73, 1978; Yang H. L., Zubay G. a. Levy S. B. Synthesis of an R-plasmid protein associated with tetracycline resistance is negatively regulated, Proc. nat. Acad. Sci. (Wash.), v. 73, p. 1509, 1976.

Подготовка к анализу на чувствительность к антибиотикам

Необходимо соблюдать стандартные требования для сдачи каждого вида биологического материала:

  • при сдаче мочи собирается средняя порция (первая порция мочи пускается в унитаз). Моча собирается в стерильный контейнер. Перед сбором мочи обязательны гигиенические процедуры;
  • грудное молоко собирается до кормления ребенка. Первая порция молока из каждой груди сбрасывается, следующие 0,5-1 мл молока из каждой груди собираются в отдельный стерильный контейнер;
  • перед забором мазка из зева и носоглотки не следует есть (в течение 4-5 часов до сдачи анализа);
  • если вы сдаете мазок из влагалища, уретры или секрет простаты, желательно воздержаться от половой жизни (в течение 1-2 дней до сдачи анализа).

FAQ об антибиотикорезистентности

Что такое антибиотикорезистентность?

О ней говорят, когда инфекции, которые ранее поддавались лечению определенным антибиотиком, начинают слабее реагировать на него или полностью теряют чувствительность к нему. Грибки, вирусы и паразиты также могут вырабатывать устойчивость, но в этой статье мы не фокусируемся на них. 

Каковы причины устойчивости к антибиотикам?

Среди возможных причин роста устойчивости к антибиотикам: 

  • увеличение их использования
  • их бесконтрольная продажа во многих странах
  • их применение в животноводстве
  • их утечка с фармацевтических заводов; 
  • широкое использование антисептиков.

Как развивается устойчивость к антибиотикам? 

Чаще устойчивость к антибиотикам развивается в результате мутаций в генах бактерий. Бактерии, мутации которых позволяют сопротивляться антибиотикам, выживают и передают свои способности потомкам: происходит естественный отбор. Существует и горизонтальная передача генов: бактерии могут получать полезные гены от своих устойчивых к антибиотикам собратьев. 

Как сопротивляются бактерии антибиотикам? 

Бактерии могут: 

  • инактивировать или изменять структуру лекарств при помощи ферментов;
  • менять свою структуру, делая невозможным действие антибиотика; — менять свой обмен веществ; 
  • снижать концентрацию лекарств внутри клетки. ##Что может сделать каждый из нас 

ОТ ЧЕГО ЗАВИСИТ РЕЗИСТЕНТНОСТЬ?

Бактерии считаются устойчивыми, когда при тестировании in vitro обнаруживается отсутствии их чувствительности к тем препаратам, которыми они раньше успешно уничтожались. Некоторые бактерии демонстрируют врожденную резистентность, которую не следует путать с приобретенной резистентностью. Бактерии проявляют врожденную резистентность, если они оказываются нечувствительными к определенным антибиотикам даже без выработки устойчивых плазмид или хромосомных мутаций.

Например, когда у пациента наблюдается инфекция, вызываемая Pseudomonas aeruginosa, то ветеринарный врач может с уверенностью предположить ее «устойчивый» характер, если она относится к «дикому» штамму Pseudomonas, который обладает врожденной резистентностью к большинству бета-лактамных антибиотиков, макролидов, тетрациклинов и комбинаций триметоприм-сульфонамидов. Другой пример врожденной резистентности демонстрируют стрептококки и энтерококки по отношению к фторхинолонам.

Не все нозокомиальные инфекции являются устойчивыми инфекциями, и наоборот. Нозокомиальными инфекциями заражаются в больницах. Однако в результате селекции антибиотиков многие из них приобрели устойчивость к наиболее распространенным антибактериальным препаратам.

Приобретенная резистентность — это появление устойчивости у ранее восприимчивых видов. Бактерии считаются устойчивыми, если их минимальная ингибирующая концентрация (МИК) превышает определенную контрольную отметку; или небольшую зону подавления в тесте диффузию на агаровом диске, определяемую согласно принятым стандартам. Механизмы, благодаря которым бактерии приобретают устойчивость, можно распределить по трем категориям:

  • уменьшение проникновения антибиотика внутрь бактерии,
  • изменение области поражения,
  • синтез ферментов, которые модифицируют данный препарат.

Итого

Появление устойчивых к антибиотикам бактерий и публикация этого списка в очередной раз привлекают внимание человечества к необходимости создания — в идеале — принципиально новых средств борьбы с микроорганизмами, иначе, по пессимистичным прогнозам, из-за появления бактерий, устойчивых к антибиотикам, через несколько десятилетий одна только послеоперационная летальность может скатиться до уровня начала прошлого века. Разработка таких препаратов — занятие неблагодарное, поэтому фармацевтические компании не стремятся развивать данное направление, и ВОЗ выносит проблему на межгосударственный уровень

Проблема лекарственной устойчивости среди возбудителей нозокомиальных инфекций — первые пять бактерий списка — актуальна и для российского здравоохранения. Остальные перечисленные микроорганизмы, по данным российских исследований, на территории РФ в целом сохраняют чувствительность к «своим» антибиотикам. Тем не менее, учитывая возросшую мобильность населения, можно ожидать завоза и распространения резистентных штаммов.

Сводная таблица: чувствительность возбудителей к антибактериальной терапии

Возбудитель

Чувствительность к антибактериальной терапии

Нет или в большинстве случаев утеряна Снижается В основном сохранена

Acinetobacter baumannii

Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны, азтреонам, пиперациллин-тазобактам

Карбапенемы, полимиксин Е

Комбинации: полимиксин Е + рифампицин/ карбапенемы/ хинолоны/ цефепим/ ампициллин-сульбактам/ пиперациллин-тазобактам

Pseudomonas aeruginosa

Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны

Карбапенемы

Полимиксин Е, комбинации а/б. + В РФ: карбапенемы

Enterobacteriaceae (госпитальные штаммы Klebsiella, Escherichia coli, Citrobacter, Enterobacter, Serratia, Proteus)

Пенициллины, цефалоспорины, тетрациклин, хинолоны

Карбапенемы, аминогликозиды. + В РФ: цефалоспорины III-IV пок.

Полимиксин Е, комбинации а/б. + В РФ: карбапенемы

Enterococcus faecium

Пенициллины, цефалоспорины, аминогликозиды

Ванкомицин

Линезолид, тигециклин, даптомицин

Staphylococcus aureus

Пенициллины, цефалоспорины

Защищенные бета-лактамы,

Пенициллины, цефалоспорины

Helicobacter pylori

Кларитромицин, метронидазол

В составе комбинированной терапии с ИПП и висмута трикалия дицитратом: амоксициллин, тетрациклин, рифаксимин

Campylobacter spp.

Пенициллины, цефалоспорины, аминогликозиды, тетрациклины. В ряде стран Азии и Африки: фторхинолоны, макролиды

Фторхинолоны, макролиды

Гентамицин, карбапенемы. + В РФ: макролиды, фторхинолоны

Salmonellae

Пенициллины, цефалоспорины, аминогликозиды, тетрациклины, хлорамфеникол, ко-тримоксазол

Фторхинолоны

Фторхинолоны, макролиды, цефалоспорины III-IV пок., карбапенемы

Neisseria gonorrhoeae

Пенициллины, тетрациклины, фторхинолоны, сульфаниламиды

Цефалоспорины

Азитромицин + цефтриаксон. + В РФ: цефалоспорины III-IV пок.

Streptococcus pneumoniae

Тетрациклин, ко-тримоксазол

Пенициллины, цефалоспорины, макролиды

Хлорамфеникол, рифампицин, респираторные фторхинолоны, ванкомицин. + В РФ: пенициллины, цефалоспорины, макролиды

Haemophilus influenzae

Ампициллин, ко-тримоксазол

Бета-лактамы (в отдельных случаях – защищенные), ко-тримоксазол, хлорамфеникол

Цефалоспорины III-IV пок., карбапенемы, хлорамфеникол, рифампицин

Shigella spp.

Ампициллин, хлорамфеникол

Фторхинолоны

Цефалоспорины III-IV пок., аминогликозиды, ко-тримоксазол. + В РФ: фторхинолоны

Источники

  1. Сайт Всемирной организации здравоохранения.
  2. «Функциональная гастроэнтерология»
  3. Durante-Mangoni E., Zarrilli R. Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance // Future Microbiol. 2011; 6 (4):407–22.
  4. Partridge S. R. Resistance mechanisms in Enterobacteriaceae // Pathology. 2015; 47 (3): 276–84.
  5. Hooper D. C., Jacoby G. A. Mechanisms of drug resistance: quinolone resistance // Ann N Y Acad Sci. 2015;1354: 12-31.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector