Анатомия хромосомы человека

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям, а именно: И. Д. Чистякову (1873), А. Шнейдеру (1873), Э. Страсбургеру (1875), О. Бючли (1876) и другим. Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем — немецкого анатома В. Флеминга, который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» собрал и упорядочил сведения о хромосомах, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители, такие как азуры, основной фуксин, орсеин и др., хорошо связываются хромосомами.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902—1903 годах У. Сеттон (Walter Sutton) независимо друг от друга выдвинули гипотезу о генетической роли хромосом.

Экспериментальное подтверждение этих идей было осуществлено в первой четверти XX века американскими учёными Т. Морганом, К. Бриджесом, А. Стёртевантом и Г. Мёллером. Объектом их генетических исследований послужила плодовая мушка D.melanogaster. На основе данных, полученных на дрозофиле, они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определённой последовательности, локализованы гены. Основные положения хромосомной теории наследственности были опубликованы в 1915 году в книге «The mechanism of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине.

Описание

Y хромосома передаётся только по мужской линии — от отца к сыну. Гены, находящиеся на этой хромосоме, отвечают за формирования мужского пола у ребёнка, поэтому эта хромосома присутствует только у мужчин. Как и в случае с мтДНК, изменения в Y хромосоме происходят исключительно за счёт накопления мутаций.
Существует около 30 основных гаплогрупп по Y хромосоме, которые подразделяются на подргуппы и под-подгруппы. Считается, что все известные на сегодняшний день гаплогруппы возникли в результате накопления мутаций при передаче Y хромосомы по наследству от прародителя всех людей на Земле, так называемого «Y хромосомного Адама», который жил в Африке 200–300 тыс. лет назад. Разные народы и этнические группы отличаются друг от друга по гаплогруппам Y хромосомы, а также по соотношению гаплогрупп среди представителей этих народов и этнических групп.
 Показания:

  • для установления родственной связи между двумя мужчинами или мужчиной и женщиной у предполагаемых родственников по мужской линии. Например, дед/бабка-внук, дядя/тетя-племянник, брат-сестра;
  • при исследовании образцов десятилетней, столетней и даже тысячелетней давности;
  • для определения принадлежности генетического профиля той или иной генеалогической ветви человечества (европейской гаплогруппе, африканской, ближневосточной, американской и т.д.). Таким образом, можно определить происхождение человека.

Подготовка
Обязательным условием проведения юридического ДНК-теста является ЕДИНОВРЕМЕННОЕ нахождение в клинике всех участников теста. Забор образцов делает специалист клиники.
Точность более 99,9% — требуется образец буккального эпителия (соскоб со щеки). Соскоб производится специальными ватными палочками из конверта.
За полтора часа до сбора образцов не принимать пищу и не курить. Непосредственно перед взятием образцов прополоскать рот теплой водой. Непосредственно перед взятием образцов вымыть руки.
При взятии образца у младенца подождать минимум полчаса с момента последнего кормления. Непосредственно перед взятием образца дать младенцу попить теплой воды из бутылочки для кормления.Процедура взятия ротового мазка

  1. Взять один конверт для образцов ДНК и одну упаковку стерильных ватных палочек.
  2. Написать на конверте сведения об образцах и указать 12-ти значный номер заказа, который находится под штрих-кодом на бланке заказа. Также указать на конверте номер образца и степень родства (например: № 1, отец).
  3. Аккуратно открыть упаковку и извлечь ТОЛЬКО ОДНУ ватную палочку. Постараться избежать контакта наконечника ватной палочки с поверхностью рук и окружающими предметами.
  4. Приоткрыть рот и аккуратно, с легким нажимом, потереть ватной палочкой внутреннюю сторону каждой щеки. Палочку рекомендуется слегка поворачивать и совершить ею не менее 10–15 движений. При взятии образца у младенца, не прилагать излишних усилий, чтобы не травмировать слизистую оболочку рта ребенка! 
  5. Вложить палочку с взятым образцом в подготовленный конверт, но НЕ ЗАКЛЕИВАТЬ его.
  6. Извлечь ВТОРУЮ ватную палочку из упаковки и повторить все действия, описанные выше.
  7. Вложить ВТОРУЮ ватную палочку в тот же самый конверт и ЗАКЛЕИТЬ его. На этом этапе в конверте должны находиться ДВА образца, полученные от ОДНОГО человека.
  8. Взять второй конверт для образцов ДНК и повторить все вышеописанные действия для второго человека, участвующего в тесте. Не забыть также указать на конверте номер заказа, номер образца и степень родства (например: №2, ребенок).
  9. Если в анализе принимают участие более двух человек, можно заказать еще один набор и, взяв оттуда ТОЛЬКО ВАТНЫЕ ПАЛОЧКИ и КОНВЕРТЫ ДЛЯ ОБРАЗЦОВ ДНК, собрать дополнительные материалы, повторив вышеописанный процесс. Обязательно подписывать сведения об образцах на конвертах (например: №3, ребенок 2).
  10. Поместить конверты с взятыми образцами и заполненный бланк заказа в прилагающийся к набору ОБЩИЙ конверт и отправить его в лабораторию. 

Доставка и хранение биоматериала:
Рекомендуется отправить образцы ДНК в день взятия биоматериала. Образцы гарантировано пригодны для генетического анализа в течение 2-х недель.
Если образцы полностью высохли до помещения в конверт, для предотвращения возникновения плесени, которая способна уничтожить ДНК, то они пригодны для генетического анализа в течение года. В таком виде образцы ДНК могут храниться без каких-либо изменений в течение многих лет.Условия выдачи результатов исследования
Результаты выдаются лично в руки в запечатанном конверте заказчику исследования, оплатившему заказ, по предъявлению паспорта, договора, квитанции об оплате.Оригинальный бланк будет изготовлен в течение 14 дней после выдачи электронного результата.

Анализ кариотипа

Кариотип – систематизированный набор хромосом ядра клетки с его количественными и качественными характеристиками.

Нормальный женский кариотип — 46,XX        Нормальный мужской кариотип — 46,XY

Исследование кариотипа — процедура, призванная выявить отклонения структуры строения и числа хромосом.

Показания для кариотипирования:

  • Множественные врожденные пороки развития, сопровождаемые клинически анормальным фенотипом или дизморфизмом
  • Умственная отсталость или отставание в развитии
  • Нарушение половой дифференцировки или аномалии полового развития
  • Первичная или вторичная аменорея
  • Аномалии спермограммы – азооспермия или тяжелая олигоспермия
  • Бесплодие неясной этиологии
  • Привычное невынашивание
  • Родители пациента со структурными хромосомными аномалиями
  • Повторное рождение детей с хромосомными аномалиями

К сожалению, с помощью исследования кариотипа можно определить лишь крупные структурные перестройки. В большинстве же случаев аномалии строения хромосом представляют собой микроделеции и микродупликации невидимые под микроскопом. Однако такие изменения хорошо идентифицируются современными молекулярными цитогенетическими методами — флуоресцентной гибридизацией (FISH) и хромосомным микроматричным анализом.

Нарушения в наборах хромосом

Иногда количество пар не соответствует стандарту. Проблему во внутриутробном развитии может заметить только генетик, если будущая мама добровольно пройдет исследование. Если количество нарушено, то выделяют такие заболевания:

  1. Синдром Клайнфельтера.
  2. Болезнь Дауна.
  3. Синдром Шерешевского-Тернера.

Консервативных методов для восполнения недостающего генетического ряда не существует на сегодняшний день. То есть подобный диагноз считается неизлечимым. Если проблема была диагностирована во время беременности, лучше всего ее прервать. В противном случае появляется больной ребенок с возможными внешними уродствами.

Болезнь Дауна

Впервые это заболевание было диагностировано еще в XVII столетии. В то время определение количества хромосом у здорового человека было крайне проблематичным занятием. Поэтому количество больных новорожденных было по-настоящему пугающим. На 1000 младенцев двое рождались с синдромом Дауна. Через некоторое время болезнь была изучена на генетическом уровне, что позволило определить, как меняется хромосомный набор.

При синдроме Дауна к 21 паре прикрепляется еще одна. То есть, общее количество составляет не 46, а 47 хромосом. Патология формируется спонтанно, а ее причиной может быть сахарный диабет, пожилой возраст родителей, повышенная доза радиации, наличие некоторых хронических заболеваний.

Внешне такой ребенок отличается от здоровых сверстников. У него узкий и широкий лоб, объемный язык, большие уши, сразу бросается в глаза умственная отсталость. Также у пациента диагностируются другие проблемы со здоровьем, которые затрагивают многие внутренние системы и органы.

По большому счету хромосомный ряд будущего малыша сильно зависит от генома его матери. Именно поэтому перед началом планирования беременности необходимо пройти полноценное клиническое обследование. Оно позволит определить скрытые проблемы. Если врачи не обнаружат противопоказаний, можно думать о зачатии ребенка.

Синдром Патау

При этом нарушении наблюдается трисомия в тринадцатой паре структурных единиц. Такое заболевание встречается намного реже, чем синдром Дауна. Оно возникает, если присоединяется лишняя структурная единица или нарушается структура хромосом и их перераспределение.

Существует три основных симптома, по которым диагностируют данную патологию:

  1. Уменьшенные размеры глаз или микрофтальм.
  2. Увеличенное количество пальцев (полидактилия).
  3. Расщелина неба и губы.

При таком заболевании около 70% младенцев вскоре после рождения (до трех лет) умирают. Часто у детей с синдромом Патау диагностируют пороки сердца, а также головного мозга, проблемы со многими внутренними органами.

Синдром Эдвардса

Эта патология характеризуется наличием трех хромосом в восемнадцатой паре. Вскоре после рождения большая часть младенцев умирает. Они рождаются с ярко выраженной гипотрофией (не могут набрать вес из-за проблем с пищеварением). У них низко расположенные уши, широко поставленные глаза. Часто диагностируются пороки сердца.

Чтобы не допустить развития патологии, рекомендовано всем родителям, которые решают зачать ребенка после 35 лет, пройти специальные обследования. Также большая вероятность развития заболеваний у тех, чьи родители имели проблемы со щитовидной железой.

Хромосомы человека

Нормальный кариотип человека представлен 46 хромосомами. Это 22 пары аутосом и одна пара половых хромосом (XY в мужском кариотипе и XX — в женском). В приведённой ниже таблице показано число генов и оснований в хромосомах человека.


Изображение 46 (23 пар) хромосом женского кариотипа человека, полученное с помощью FISH с флуоресцентно-мечеными Alu-повторами. Alu-повторы показаны зелёным цветом, ДНК — красным. У человека самая длинная 1-я хромосома примерно в 5 раз длиннее самой короткой 21-й хромосомы.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
249250621 3511 2076
243199373 2368 1329
198022430 1926 1077
191154276 1444 767
180915260 1633 896
171115067 2057 1051
159138663 1882 979
146364022 1315 702
141213431 1534 823
135534747 1391 774
135006516 2168 1914
133851895 1714 1068
115169878 720 331
107349540 1532 862
102531392 1249 615
90354753 1326 883
81195210 1773 1209
78077248 557 289
59128983 2066 1492
63025520 891 561
48129895 450 246
51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76

Заболевания и расстройства

Ниже приведены некоторые заболевания, связанные с генами, расположенными на хромосоме 5:

  • Ахондрогенез 1B типа
  • Ателостеогенез, тип II
  • Синдром атрофии зрительного нерва Бош-Бунстра-Шааф
  • Болезнь Шарко – Мари – Тута, тип 4
  • Синдром Кокейна
  • Синдром Корнелии де Ланге
  • Дистрофия роговицы слоя Боумена
  • Кри дю чат
  • Диастрофическая дисплазия
  • Синдром Элерса-Данлоса
  • Семейный аденоматозный полипоз
  • Гранулярная дистрофия роговицы I типа
  • Гранулярная дистрофия роговицы II типа
  • GM2-ганглиозидоз, вариант AB
  • Гомоцистинурия
  • Дефицит 3-метилкротонил-КоА карбоксилазы
  • Миелодиспластический синдром
  • Синдром Нетертона
  • Никотиновая зависимость
  • болезнь Паркинсона
  • Первичный дефицит карнитина
  • Рецессивная множественная эпифизарная дисплазия
  • Болезнь Сандхоффа
  • Спинальная мышечная атрофия
  • Синдром Сотоса
  • Выживание моторных нейронов, спинальная мышечная атрофия
  • Синдром Тричера Коллинза
  • Трихо-гепато-кишечный синдром
  • Синдром Ашера

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы

Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» – окраска и «somo» – тело.

Исследование хромосомных отклонений

Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).

Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.

Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.

Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.

Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.

Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз, Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20—40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные — Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 — начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30—40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Что такое хромосомы

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

Хромосомы мужчины и женщины. Вырождающаяся Y-хромосома и будущее мужчин

Y-хромосома, эта небольшая цепочка генов, определяющая пол людей, не такая постоянная, как вы думаете. Фактически, если мы посмотрим на Y-хромосому в течение нашей эволюции, мы увидели, что она деградирует с угрожающей скоростью.

Исчезнет ли она полностью когда-нибудь? И что произойдет с человеческой расой, если это случится?

Люди, как и другие млекопитающие, имеют так называемый «хромосомный пол». У женщин есть две копии хромосомы среднего размера, которая называется X (означает «неизвестность», потому что это изначально было загадкой). У мужчин есть одна X и маленькая Y-хромосома.

Х и Y хромосомы. Источник изображения: www.anatomybox.com

X-хромосома имеет около 1600 генов с различными функциями. А Y-хромосомы генов почти нет, только 27 из них находятся в мужской части Y-хромосомы. Многие из них присутствуют в нескольких экземплярах, большинство из которых неактивны в петлях ДНК. Большая часть Y-хромосомы состоит из повторяющейся «мусорной ДНК». Таким образом, мужская Y-хромосома показывает все признаки деградации и вырождения.

Мы знаем, что через 12 недель у человеческого эмбриона XY развиваются яички, которые вырабатывают мужские гормоны и вызывают развитие у ребенка как мужчины. Идентичность этого мужского определяющего гена на Y (ген SRY) была обнаружена в 1990 году молодым австралийским докторантом Эндрю Синклером (аспирантом моей лаборатории). У младенцев с мутациями в гене SRY не развиваются яички и они развиваются как женщины.

Деградация и вырождение Y-хромосомы

Что случилось с Y-хромосомой, сделав ее намного меньше X, и заставило потерять большинство ее генов?

Наши половые хромосомы были когда-то просто двумя обыкновенными хромосомами, которые до сих пор есть у рептилий и птиц. Учеными было обнаружено, что они все еще также остаются обычными хромосомами у монотропических млекопитающих (утконосов и эхид), которые 166 миллионов лет назад произошли от общего предка с людьми.

Это значит, что за прошедшие 166 миллионов лет Y-хромосома утратила большинство из своих 1600 генов. При таких темпах Y-хромосома исчезнет примерно через 4,5 миллиона лет.

На самом деле ничего удивительного в этом нет. Деградация характерна для всех половых хромосомных систем. Приобретение гена, определяющего пол, — это поцелуй смерти для хромосомы, потому что другие гены, расположенные рядом с Y, развивают мужскую специфическую функцию, и эти гены сохраняются вместе, подавляя обмен с Х.

Конечно, потеря генов из Y вряд ли будет линейной. Он может ускориться, когда Y становится более неустойчивым, или он может стабилизироваться по мере того, как Y лишен необходимых генов.Возможно, потеря любого из оставшихся генов 27 Y поставит под угрозу жизнеспособность или плодовитость носителя.

Хотя известно, что даже гены в человеческой Y-хромосоме с важными функциями (такими как создание спермы) отсутствуют в Y-хоромосоме мышей. Некоторые виды грызунов вообще потеряли всю свою Y-хромосому. Гены из Y-хромосомы либо переместились в другие хромосомы, либо их функции стали исполнять другие гены, ученым это не известно.

Мир без мужчин…

Если исчезнет Y-хромосома, то ​​исчезнут ли люди?

Если это случится, то это станет концом человечества. Человеческая раса не сможет оставаться исключительно женским видом (как некоторые ящерицы), так как есть 30 генов, активных только в случае, если они проникают через сперму. Население планеты не сможет самовоспроизводиться без мужчин.

Значит ли это, что мужчины исчезнут в течении 4,5 миллиона лет? Не обязательно. Если грызуны без Y-хромосомы развили новый, определяющий пол ген, так почему это не может произойти и с людьми?

Вполне возможно, что это уже произошло в какой-то небольшой изолированной группе людей, где гораздо более вероятны генетические несчастные случаи.

Но люди с новыми определяющими генами не смогут легко размножаться с людьми, которые сохранят нынешние XY-хромосомы. Дети, скажем, женщины XX и мужчины с новым половым геном, скорее всего, будут интерсексуальными или, по крайней мере, бесплодными. Эта репродуктивная преграда может привести к образованию зарождающихся разновидностей, как это произошло с грызунами без Y-хромосомы.

Как бы то ни было, 4,5 миллиона лет — это большой срок. Мы являемся людьми менее 100 000 лет. И гораздо более вероятно, что мы вымрем по другим причинам еще задолго до того, как исчезнет Y-хромосома.

Выводы

Аномалии хромосомного набора по хромосомам 13, 16, 18, 21, 22, Х и Y были характерны для 65,2 % преимплантационных эмбрионов, что значительно превышает уровень хромосомных аномалий в пренатальном этапе развития. От момента образования зиготы до момента рождения ребенка выражена тенденция на уменьшение доли эмбрионов с хромосомными нарушениями. Соответственно, самый эффективный отбор и элиминация нежизнеспособных эмбрионов происходит именно на стадии преимплантационных эмбрионов. Выявлено характерное привнесение анеуплоидии 21 через ооцит, а также анеуплоидии 18 через сперматозоид. Очевидно, хромосомный состав эмбриона, напрямую, зависит от набора хромосом в гаметах, а также их морфологических и качественных характеристик

Поэтому необходимо уделять большое внимание диагностике кариотипа и генеративных клеток, в частности сперматозоидов, до введения пациентов в циклы оплодотворения in vitro для повышения эффективности преимплантационной диагностики и составления более точного прогноза в исходе программы ВРТ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector